Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
|
|
dude kernel moduless use kernel errors :)
this fixes an oops on init when this codepath hits.
|
|
|
|
|
|
This fixes a problem where the wrong bo->fence_type was reported, and
also saves some memory space.
[bo core] export the drm_bo_fill_rep_arg function.
|
|
|
|
|
|
- Note that this may not work for all nv86.
|
|
|
|
This interface was defined completely wrong, however userspace has only
ever used 4 values from it (0x1, 0x2, 0x3 and 0x6), so fix the interface to do what userspace actually expected but define new defines for new users to use
it properly.
|
|
Previously, the R300_CMD_WAIT command would write the passed directly to the
hardware. However this is incorrect because the R300_WAIT_* values used are
internal interface values that do not map directly to the hardware.
The new function I have added translates the R300_WAIT_* values into appropriate
values for the hardware before writing the register.
Thanks to John Bridgman for pointing this out. :-)
|
|
|
|
using contexts for this is bad for multiple masters
|
|
The wait functions depend on PTIMER, so write the old (incorrect, but working) values for uninitialised hw
|
|
Kernel bug 10289.
|
|
|
|
|
|
|
|
More or less a workaround for issues on some chipsets where a context
switch results in critical data in PRAMIN being overwritten by the GPU.
The correct fix is known, but may take some time before it's a feasible
option.
|
|
Limit frag address to 8 bits
|
|
into modesetting-101
|
|
|
|
|
|
|
|
This needs to be tested thoroughly before pushing to the
kernel.
|
|
This updated microcode is not in use yet.
|
|
|
|
|
|
Fix that got left out after the intel-post-reloc merge.
|
|
this may not survive long - just need something for testing
|
|
|
|
When a master is exiting, make sure we clean it up and not the currently
in charge master.
|
|
When destroying DRI sarea, make sure you use the master associated with the
sarea and not the one currently in charge
|
|
|
|
This is the correct fix for the RS690 and hopefully the dma coherent work.
For now we limit everybody to a 32-bit DMA mask but it is possible for
RS690 to use a 40-bit DMA mask for the GART table itself,
and the PCIE cards can use 40-bits for the table entries.
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
|
|
|
|
|
|
DMA command submission. It's worth remembering that all new bright ideas on how
to make this command reader work properly and according to docs
will probably fail :( Bring in some old code.
|
|
|
|
|
|
|
|
The docs state bits 4-11 represent bits 32-39 of a 40-bit address
|
|
doesn't fix anything but just making it consistent
|
|
|
|
The i915_vblank_swap() function schedules an automatic buffer swap
upon receipt of the vertical sync interrupt. Such an operation is
lengthy so it can't be allowed to happen in normal interrupt context,
thus the DRM implements this by scheduling the work in a kernel
softirq-scheduled tasklet. In order for the buffer swap to work
safely, the DRM's central lock must be taken, via a call to
drm_lock_take() located in drivers/char/drm/drm_irq.c within the
function drm_locked_tasklet_func(). The lock-taking logic uses a
non-interrupt-blocking spinlock to implement the manipulations needed
to take the lock. This semantic would be safe if all attempts to use
the spinlock only happen from process context. However this buffer
swap happens from softirq context which is really a form of interrupt
context. Thus we have an unsafe situation, in that
drm_locked_tasklet_func() can block on a spinlock already taken by a
thread in process context which will never get scheduled again because
of the blocked softirq tasklet. This wedges the kernel hard.
To trigger this bug, run a dual-head cloned mode configuration which
uses the i915 drm, then execute an opengl application which
synchronizes buffer swaps against the vertical sync interrupt. In my
testing, a lockup always results after running anywhere from 5 minutes
to an hour and a half. I believe dual-head is needed to really
trigger the problem because then the vertical sync interrupt handling
is no longer predictable (due to being interrupt-sourced from two
different heads running at different speeds). This raises the
probability of the tasklet trying to run while the userspace DRI is
doing things to the GPU (and manipulating the DRM lock).
The fix is to change the relevant spinlock semantics to be the
interrupt-blocking form. After this change I am no longer able to
trigger the lockup; the longest test run so far was 20 hours (test
stopped after that point).
Note: I have examined the places where this spinlock is being
employed; all are reasonably short bounded sequences and should be
suitable for interrupts being blocked without impacting overall kernel
interrupt response latency.
Signed-off-by: Mike Isely <isely@pobox.com>
|
|
|