# # Drm device configuration # # This driver provides support for the # Direct Rendering Infrastructure (DRI) in XFree86 4.1.0 and higher. # config DRM bool "Direct Rendering Manager (XFree86 4.1.0 and higher DRI support)" help Kernel-level support for the Direct Rendering Infrastructure (DRI) introduced in XFree86 4.0. If you say Y here, you need to select the module that's right for your graphics card from the list below. These modules provide support for synchronization, security, and DMA transfers. Please see for more details. You should also select and configure AGP (/dev/agpgart) support. config DRM_TDFX tristate "3dfx Banshee/Voodoo3+" depends on DRM && PCI help Choose this option if you have a 3dfx Banshee or Voodoo3 (or later), graphics card. If M is selected, the module will be called tdfx. config DRM_R128 tristate "ATI Rage 128" depends on DRM && PCI help Choose this option if you have an ATI Rage 128 graphics card. If M is selected, the module will be called r128. AGP support for this card is strongly suggested (unless you have a PCI version). config DRM_RADEON tristate "ATI Radeon" depends on DRM && PCI help Choose this option if you have an ATI Radeon graphics card. There are both PCI and AGP versions. You don't need to choose this to run the Radeon in plain VGA mode. There is a product page at . If M is selected, the module will be called radeon. config DRM_I810 tristate "Intel I810" depends on DRM && AGP && AGP_INTEL help Choose this option if you have an Intel I810 graphics card. If M is selected, the module will be called i810. AGP support is required for this driver to work. choice prompt "Intel 830M, 845G, 852GM, 855GM, 865G" depends on DRM && AGP && AGP_INTEL optional config DRM_I915 tristate "i915 driver" help Choose this option if you have a system that has Intel 830M, 845G, 852GM, 855GM, 865G, 915G, 915GM, 945G, 945GM and 965G integrated graphics. If M is selected, the module will be called i915. AGP support is required for this driver to work. endchoice config DRM_MGA tristate "Matrox g200/g400" depends on DRM && (!X86_64 || BROKEN) && (!PPC || BROKEN) help Choose this option if you have a Matrox G200, G400, G450 or G550 graphics card. If M is selected, the module will be called mga. config DRM_SIS tristate "SiS video cards" depends on DRM help Choose this option if you have a SiS 630 or compatible video chipset. If M is selected the module will be called sis. config DRM_VIA tristate "Via unichrome video cards" depends on DRM help Choose this option if you have a Via unichrome or compatible video chipset. If M is selected the module will be called via. config DRM_MACH64 tristate "ATI Rage Pro (Mach64)" depends on DRM && PCI help Choose this option if you have an ATI Rage Pro (mach64 chipset) graphics card. Example cards include: 3D Rage Pro, Xpert 98, 3D Rage LT Pro, 3D Rage XL/XC, and 3D Rage Mobility (P/M, M1). Cards earlier than ATI Rage Pro (e.g. Rage II) are not supported. If M is selected, the module will be called mach64. AGP support for this card is strongly suggested (unless you have a PCI version). 0'>10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
#include "nouveau_drm.h"

/*
 * NV20
 * -----
 * There are 3 families :
 * NV20 is 0x10de:0x020*
 * NV25/28 is 0x10de:0x025* / 0x10de:0x028*
 * NV2A is 0x10de:0x02A0
 *
 * NV30
 * -----
 * There are 3 families :
 * NV30/31 is 0x10de:0x030* / 0x10de:0x031*
 * NV34 is 0x10de:0x032*
 * NV35/36 is 0x10de:0x033* / 0x10de:0x034*
 *
 * Not seen in the wild, no dumps (probably NV35) :
 * NV37 is 0x10de:0x00fc, 0x10de:0x00fd
 * NV38 is 0x10de:0x0333, 0x10de:0x00fe
 *
 */

#define NV20_GRCTX_SIZE (3580*4)
#define NV25_GRCTX_SIZE (3529*4)
#define NV2A_GRCTX_SIZE (3500*4)

#define NV30_31_GRCTX_SIZE (24392)
#define NV34_GRCTX_SIZE    (18140)
#define NV35_36_GRCTX_SIZE (22396)

static void nv20_graph_context_init(struct drm_device *dev,
                                    struct nouveau_gpuobj *ctx)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i;
/*
write32 #1 block at +0x00740adc NV_PRAMIN+0x40adc of 3369 (0xd29) elements:
+0x00740adc: ffff0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740afc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b1c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b3c: 00000000 0fff0000 0fff0000 00000000 00000000 00000000 00000000 00000000
+0x00740b5c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b7c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b9c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740bbc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740bdc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740bfc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

+0x00740c1c: 00000101 00000000 00000000 00000000 00000000 00000111 00000000 00000000
+0x00740c3c: 00000000 00000000 00000000 44400000 00000000 00000000 00000000 00000000
+0x00740c5c: 00000000 00000000 00000000 00000000 00000000 00000000 00030303 00030303
+0x00740c7c: 00030303 00030303 00000000 00000000 00000000 00000000 00080000 00080000
+0x00740c9c: 00080000 00080000 00000000 00000000 01012000 01012000 01012000 01012000
+0x00740cbc: 000105b8 000105b8 000105b8 000105b8 00080008 00080008 00080008 00080008
+0x00740cdc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740cfc: 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000
+0x00740d1c: 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000
+0x00740d3c: 00000000 00000000 4b7fffff 00000000 00000000 00000000 00000000 00000000

+0x00740d5c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740d7c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740d9c: 00000001 00000000 00004000 00000000 00000000 00000001 00000000 00040000
+0x00740dbc: 00010000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740ddc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...
*/
	INSTANCE_WR(ctx, (0x33c/4)+0, 0xffff0000);
	INSTANCE_WR(ctx, (0x33c/4)+25, 0x0fff0000);
	INSTANCE_WR(ctx, (0x33c/4)+26, 0x0fff0000);
	INSTANCE_WR(ctx, (0x33c/4)+80, 0x00000101);
	INSTANCE_WR(ctx, (0x33c/4)+85, 0x00000111);
	INSTANCE_WR(ctx, (0x33c/4)+91, 0x44400000);
	for (i = 0; i < 4; ++i)
		INSTANCE_WR(ctx, (0x33c/4)+102+i, 0x00030303);
	for (i = 0; i < 4; ++i)
		INSTANCE_WR(ctx, (0x33c/4)+110+i, 0x00080000);
	for (i = 0; i < 4; ++i)
		INSTANCE_WR(ctx, (0x33c/4)+116+i, 0x01012000);
	for (i = 0; i < 4; ++i)
		INSTANCE_WR(ctx, (0x33c/4)+120+i, 0x000105b8);
	for (i = 0; i < 4; ++i)
		INSTANCE_WR(ctx, (0x33c/4)+124+i, 0x00080008);
	for (i = 0; i < 16; ++i)
		INSTANCE_WR(ctx, (0x33c/4)+136+i, 0x07ff0000);
	INSTANCE_WR(ctx, (0x33c/4)+154, 0x4b7fffff);
	INSTANCE_WR(ctx, (0x33c/4)+176, 0x00000001);
	INSTANCE_WR(ctx, (0x33c/4)+178, 0x00004000);
	INSTANCE_WR(ctx, (0x33c/4)+181, 0x00000001);
	INSTANCE_WR(ctx, (0x33c/4)+183, 0x00040000);
	INSTANCE_WR(ctx, (0x33c/4)+184, 0x00010000);

/*
...
+0x0074239c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x007423bc: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x007423dc: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x007423fc: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
...
+0x00742bdc: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742bfc: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742c1c: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742c3c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...
*/
	for (i = 0; i < 0x880; i += 0x10) {
		INSTANCE_WR(ctx, ((0x1c1c + i)/4)+0, 0x10700ff9);
		INSTANCE_WR(ctx, ((0x1c1c + i)/4)+1, 0x0436086c);
		INSTANCE_WR(ctx, ((0x1c1c + i)/4)+2, 0x000c001b);
	}

/*
write32 #1 block at +0x00742fbc NV_PRAMIN+0x42fbc of 4 (0x4) elements:
+0x00742fbc: 3f800000 00000000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x281c/4), 0x3f800000);

/*
write32 #1 block at +0x00742ffc NV_PRAMIN+0x42ffc of 12 (0xc) elements:
+0x00742ffc: 40000000 3f800000 3f000000 00000000 40000000 3f800000 00000000 bf800000
+0x0074301c: 00000000 bf800000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x285c/4)+0, 0x40000000);
	INSTANCE_WR(ctx, (0x285c/4)+1, 0x3f800000);
	INSTANCE_WR(ctx, (0x285c/4)+2, 0x3f000000);
	INSTANCE_WR(ctx, (0x285c/4)+4, 0x40000000);
	INSTANCE_WR(ctx, (0x285c/4)+5, 0x3f800000);
	INSTANCE_WR(ctx, (0x285c/4)+7, 0xbf800000);
	INSTANCE_WR(ctx, (0x285c/4)+9, 0xbf800000);

/*
write32 #1 block at +0x00742fcc NV_PRAMIN+0x42fcc of 4 (0x4) elements:
+0x00742fcc: 00000000 3f800000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x282c/4)+1, 0x3f800000);

/*
write32 #1 block at +0x0074302c NV_PRAMIN+0x4302c of 4 (0x4) elements:
+0x0074302c: 00000000 00000000 00000000 00000000
write32 #1 block at +0x00743c9c NV_PRAMIN+0x43c9c of 4 (0x4) elements:
+0x00743c9c: 00000000 00000000 00000000 00000000
write32 #1 block at +0x00743c3c NV_PRAMIN+0x43c3c of 8 (0x8) elements:
+0x00743c3c: 00000000 00000000 000fe000 00000000 00000000 00000000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x349c/4)+2, 0x000fe000);

/*
write32 #1 block at +0x00743c6c NV_PRAMIN+0x43c6c of 4 (0x4) elements:
+0x00743c6c: 00000000 00000000 00000000 00000000
write32 #1 block at +0x00743ccc NV_PRAMIN+0x43ccc of 4 (0x4) elements:
+0x00743ccc: 00000000 000003f8 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x352c/4)+1, 0x000003f8);

/* write32 #1 NV_PRAMIN+0x43ce0 <- 0x002fe000 */
	INSTANCE_WR(ctx, 0x3540/4, 0x002fe000);

/*
write32 #1 block at +0x00743cfc NV_PRAMIN+0x43cfc of 8 (0x8) elements:
+0x00743cfc: 001c527c 001c527c 001c527c 001c527c 001c527c 001c527c 001c527c 001c527c
*/
	for (i = 0; i < 8; ++i)
		INSTANCE_WR(ctx, (0x355c/4)+i, 0x001c527c);
}

static void nv2a_graph_context_init(struct drm_device *dev,
                                    struct nouveau_gpuobj *ctx)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i;

	INSTANCE_WR(ctx, 0x33c/4, 0xffff0000);
	for(i = 0x3a0; i< 0x3a8; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0fff0000);
	INSTANCE_WR(ctx, 0x47c/4, 0x00000101);
	INSTANCE_WR(ctx, 0x490/4, 0x00000111);
	INSTANCE_WR(ctx, 0x4a8/4, 0x44400000);
	for(i = 0x4d4; i< 0x4e4; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00030303);
	for(i = 0x4f4; i< 0x504; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00080000);
	for(i = 0x50c; i< 0x51c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x01012000);
	for(i = 0x51c; i< 0x52c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x000105b8);
	for(i = 0x52c; i< 0x53c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00080008);
	for(i = 0x55c; i< 0x59c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x07ff0000);
	INSTANCE_WR(ctx, 0x5a4/4, 0x4b7fffff);
	INSTANCE_WR(ctx, 0x5fc/4, 0x00000001);
	INSTANCE_WR(ctx, 0x604/4, 0x00004000);
	INSTANCE_WR(ctx, 0x610/4, 0x00000001);
	INSTANCE_WR(ctx, 0x618/4, 0x00040000);
	INSTANCE_WR(ctx, 0x61c/4, 0x00010000);

	for (i=0x1a9c; i <= 0x22fc/4; i += 32) {
		INSTANCE_WR(ctx, i/4    , 0x10700ff9);
		INSTANCE_WR(ctx, i/4 + 1, 0x0436086c);
		INSTANCE_WR(ctx, i/4 + 2, 0x000c001b);
	}

	INSTANCE_WR(ctx, 0x269c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x26b0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x26dc/4, 0x40000000);
	INSTANCE_WR(ctx, 0x26e0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x26e4/4, 0x3f000000);
	INSTANCE_WR(ctx, 0x26ec/4, 0x40000000);
	INSTANCE_WR(ctx, 0x26f0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x26f8/4, 0xbf800000);
	INSTANCE_WR(ctx, 0x2700/4, 0xbf800000);
	INSTANCE_WR(ctx, 0x3024/4, 0x000fe000);
	INSTANCE_WR(ctx, 0x30a0/4, 0x000003f8);
	INSTANCE_WR(ctx, 0x33fc/4, 0x002fe000);
	for(i = 0x341c; i< 0x343c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x001c527c);
}

static void nv25_graph_context_init(struct drm_device *dev,
                                    struct nouveau_gpuobj *ctx)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i;
/*
write32 #1 block at +0x00740a7c NV_PRAMIN.GRCTX0+0x35c of 173 (0xad) elements:
+0x00740a7c: ffff0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740a9c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740abc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740adc: 00000000 0fff0000 0fff0000 00000000 00000000 00000000 00000000 00000000
+0x00740afc: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b1c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b3c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b5c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

+0x00740b7c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740b9c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740bbc: 00000101 00000000 00000000 00000000 00000000 00000111 00000000 00000000
+0x00740bdc: 00000000 00000000 00000000 00000080 ffff0000 00000001 00000000 00000000
+0x00740bfc: 00000000 00000000 44400000 00000000 00000000 00000000 00000000 00000000
+0x00740c1c: 4b800000 00000000 00000000 00000000 00000000 00030303 00030303 00030303
+0x00740c3c: 00030303 00000000 00000000 00000000 00000000 00080000 00080000 00080000
+0x00740c5c: 00080000 00000000 00000000 01012000 01012000 01012000 01012000 000105b8

+0x00740c7c: 000105b8 000105b8 000105b8 00080008 00080008 00080008 00080008 00000000
+0x00740c9c: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 07ff0000
+0x00740cbc: 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000
+0x00740cdc: 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 07ff0000 00000000
+0x00740cfc: 00000000 4b7fffff 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740d1c: 00000000 00000000 00000000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x35c/4)+0, 0xffff0000);
	INSTANCE_WR(ctx, (0x35c/4)+25, 0x0fff0000);
	INSTANCE_WR(ctx, (0x35c/4)+26, 0x0fff0000);
	INSTANCE_WR(ctx, (0x35c/4)+80, 0x00000101);
	INSTANCE_WR(ctx, (0x35c/4)+85, 0x00000111);
	INSTANCE_WR(ctx, (0x35c/4)+91, 0x00000080);
	INSTANCE_WR(ctx, (0x35c/4)+92, 0xffff0000);
	INSTANCE_WR(ctx, (0x35c/4)+93, 0x00000001);
	INSTANCE_WR(ctx, (0x35c/4)+98, 0x44400000);
	INSTANCE_WR(ctx, (0x35c/4)+104, 0x4b800000);
	INSTANCE_WR(ctx, (0x35c/4)+109, 0x00030303);
	INSTANCE_WR(ctx, (0x35c/4)+110, 0x00030303);
	INSTANCE_WR(ctx, (0x35c/4)+111, 0x00030303);
	INSTANCE_WR(ctx, (0x35c/4)+112, 0x00030303);
	INSTANCE_WR(ctx, (0x35c/4)+117, 0x00080000);
	INSTANCE_WR(ctx, (0x35c/4)+118, 0x00080000);
	INSTANCE_WR(ctx, (0x35c/4)+119, 0x00080000);
	INSTANCE_WR(ctx, (0x35c/4)+120, 0x00080000);
	INSTANCE_WR(ctx, (0x35c/4)+123, 0x01012000);
	INSTANCE_WR(ctx, (0x35c/4)+124, 0x01012000);
	INSTANCE_WR(ctx, (0x35c/4)+125, 0x01012000);
	INSTANCE_WR(ctx, (0x35c/4)+126, 0x01012000);
	INSTANCE_WR(ctx, (0x35c/4)+127, 0x000105b8);
	INSTANCE_WR(ctx, (0x35c/4)+128, 0x000105b8);
	INSTANCE_WR(ctx, (0x35c/4)+129, 0x000105b8);
	INSTANCE_WR(ctx, (0x35c/4)+130, 0x000105b8);
	INSTANCE_WR(ctx, (0x35c/4)+131, 0x00080008);
	INSTANCE_WR(ctx, (0x35c/4)+132, 0x00080008);
	INSTANCE_WR(ctx, (0x35c/4)+133, 0x00080008);
	INSTANCE_WR(ctx, (0x35c/4)+134, 0x00080008);
	for (i=0; i<16; ++i)
		INSTANCE_WR(ctx, (0x35c/4)+143+i, 0x07ff0000);
	INSTANCE_WR(ctx, (0x35c/4)+161, 0x4b7fffff);

/*
write32 #1 block at +0x00740d34 NV_PRAMIN.GRCTX0+0x614 of 3136 (0xc40) elements:
+0x00740d34: 00000000 00000000 00000000 00000080 30201000 70605040 b0a09080 f0e0d0c0
+0x00740d54: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00740d74: 00000000 00000000 00000000 00000000 00000001 00000000 00004000 00000000
+0x00740d94: 00000000 00000001 00000000 00040000 00010000 00000000 00000000 00000000
+0x00740db4: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...
+0x00742214: 00000000 00000000 00000000 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742234: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742254: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742274: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
...
+0x00742a34: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742a54: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742a74: 10700ff9 0436086c 000c001b 00000000 10700ff9 0436086c 000c001b 00000000
+0x00742a94: 10700ff9 0436086c 000c001b 00000000 00000000 00000000 00000000 00000000
+0x00742ab4: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
+0x00742ad4: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x614/4)+3, 0x00000080);
	INSTANCE_WR(ctx, (0x614/4)+4, 0x30201000);
	INSTANCE_WR(ctx, (0x614/4)+5, 0x70605040);
	INSTANCE_WR(ctx, (0x614/4)+6, 0xb0a09080);
	INSTANCE_WR(ctx, (0x614/4)+7, 0xf0e0d0c0);
	INSTANCE_WR(ctx, (0x614/4)+20, 0x00000001);
	INSTANCE_WR(ctx, (0x614/4)+22, 0x00004000);
	INSTANCE_WR(ctx, (0x614/4)+25, 0x00000001);
	INSTANCE_WR(ctx, (0x614/4)+27, 0x00040000);
	INSTANCE_WR(ctx, (0x614/4)+28, 0x00010000);
	for (i=0; i < 0x880/4; i+=4) {
		INSTANCE_WR(ctx, (0x1b04/4)+i+0, 0x10700ff9);
		INSTANCE_WR(ctx, (0x1b04/4)+i+1, 0x0436086c);
		INSTANCE_WR(ctx, (0x1b04/4)+i+2, 0x000c001b);
	}

/*
write32 #1 block at +0x00742e24 NV_PRAMIN.GRCTX0+0x2704 of 4 (0x4) elements:
+0x00742e24: 3f800000 00000000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x2704/4), 0x3f800000);

/*
write32 #1 block at +0x00742e64 NV_PRAMIN.GRCTX0+0x2744 of 12 (0xc) elements:
+0x00742e64: 40000000 3f800000 3f000000 00000000 40000000 3f800000 00000000 bf800000
+0x00742e84: 00000000 bf800000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x2744/4)+0, 0x40000000);
	INSTANCE_WR(ctx, (0x2744/4)+1, 0x3f800000);
	INSTANCE_WR(ctx, (0x2744/4)+2, 0x3f000000);
	INSTANCE_WR(ctx, (0x2744/4)+4, 0x40000000);
	INSTANCE_WR(ctx, (0x2744/4)+5, 0x3f800000);
	INSTANCE_WR(ctx, (0x2744/4)+7, 0xbf800000);
	INSTANCE_WR(ctx, (0x2744/4)+9, 0xbf800000);

/*
write32 #1 block at +0x00742e34 NV_PRAMIN.GRCTX0+0x2714 of 4 (0x4) elements:
+0x00742e34: 00000000 3f800000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x2714/4)+1, 0x3f800000);

/*
write32 #1 block at +0x00742e94 NV_PRAMIN.GRCTX0+0x2774 of 4 (0x4) elements:
+0x00742e94: 00000000 00000000 00000000 00000000
write32 #1 block at +0x00743804 NV_PRAMIN.GRCTX0+0x30e4 of 4 (0x4) elements:
+0x00743804: 00000000 00000000 00000000 00000000
write32 #1 block at +0x007437a4 NV_PRAMIN.GRCTX0+0x3084 of 8 (0x8) elements:
+0x007437a4: 00000000 00000000 000fe000 00000000 00000000 00000000 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x3084/4)+2, 0x000fe000);

/*
write32 #1 block at +0x007437d4 NV_PRAMIN.GRCTX0+0x30b4 of 4 (0x4) elements:
+0x007437d4: 00000000 00000000 00000000 00000000
write32 #1 block at +0x00743824 NV_PRAMIN.GRCTX0+0x3104 of 4 (0x4) elements:
+0x00743824: 00000000 000003f8 00000000 00000000
*/
	INSTANCE_WR(ctx, (0x3104/4)+1, 0x000003f8);

/* write32 #1 NV_PRAMIN.GRCTX0+0x3468 <- 0x002fe000 */
	INSTANCE_WR(ctx, 0x3468/4, 0x002fe000);

/*
write32 #1 block at +0x00743ba4 NV_PRAMIN.GRCTX0+0x3484 of 8 (0x8) elements:
+0x00743ba4: 001c527c 001c527c 001c527c 001c527c 001c527c 001c527c 001c527c 001c527c
*/
	for (i=0; i<8; ++i)
		INSTANCE_WR(ctx, (0x3484/4)+i, 0x001c527c);
}

static void nv30_31_graph_context_init(struct drm_device *dev,
                                       struct nouveau_gpuobj *ctx)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i;

	INSTANCE_WR(ctx, 0x410/4, 0x00000101);
	INSTANCE_WR(ctx, 0x424/4, 0x00000111);
	INSTANCE_WR(ctx, 0x428/4, 0x00000060);
	INSTANCE_WR(ctx, 0x444/4, 0x00000080);
	INSTANCE_WR(ctx, 0x448/4, 0xffff0000);
	INSTANCE_WR(ctx, 0x44c/4, 0x00000001);
	INSTANCE_WR(ctx, 0x460/4, 0x44400000);
	INSTANCE_WR(ctx, 0x48c/4, 0xffff0000);
	for(i = 0x4e0; i< 0x4e8; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0fff0000);
	INSTANCE_WR(ctx, 0x4ec/4, 0x00011100);
	for(i = 0x508; i< 0x548; i += 4)
		INSTANCE_WR(ctx, i/4, 0x07ff0000);
	INSTANCE_WR(ctx, 0x550/4, 0x4b7fffff);
	INSTANCE_WR(ctx, 0x58c/4, 0x00000080);
	INSTANCE_WR(ctx, 0x590/4, 0x30201000);
	INSTANCE_WR(ctx, 0x594/4, 0x70605040);
	INSTANCE_WR(ctx, 0x598/4, 0xb8a89888);
	INSTANCE_WR(ctx, 0x59c/4, 0xf8e8d8c8);
	INSTANCE_WR(ctx, 0x5b0/4, 0xb0000000);
	for(i = 0x600; i< 0x640; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00010588);
	for(i = 0x640; i< 0x680; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00030303);
	for(i = 0x6c0; i< 0x700; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0008aae4);
	for(i = 0x700; i< 0x740; i += 4)
		INSTANCE_WR(ctx, i/4, 0x01012000);
	for(i = 0x740; i< 0x780; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00080008);
	INSTANCE_WR(ctx, 0x85c/4, 0x00040000);
	INSTANCE_WR(ctx, 0x860/4, 0x00010000);
	for(i = 0x864; i< 0x874; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00040004);
	for(i = 0x1f18; i<= 0x3088 ; i+= 16) {
		INSTANCE_WR(ctx, i/4 + 0, 0x10700ff9);
		INSTANCE_WR(ctx, i/4 + 1, 0x0436086c);
		INSTANCE_WR(ctx, i/4 + 2, 0x000c001b);
	}
	for(i = 0x30b8; i< 0x30c8; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0000ffff);
	INSTANCE_WR(ctx, 0x344c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3808/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x381c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3848/4, 0x40000000);
	INSTANCE_WR(ctx, 0x384c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3850/4, 0x3f000000);
	INSTANCE_WR(ctx, 0x3858/4, 0x40000000);
	INSTANCE_WR(ctx, 0x385c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3864/4, 0xbf800000);
	INSTANCE_WR(ctx, 0x386c/4, 0xbf800000);
}

static void nv34_graph_context_init(struct drm_device *dev,
                                    struct nouveau_gpuobj *ctx)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i;

	INSTANCE_WR(ctx, 0x40c/4, 0x01000101);
	INSTANCE_WR(ctx, 0x420/4, 0x00000111);
	INSTANCE_WR(ctx, 0x424/4, 0x00000060);
	INSTANCE_WR(ctx, 0x440/4, 0x00000080);
	INSTANCE_WR(ctx, 0x444/4, 0xffff0000);
	INSTANCE_WR(ctx, 0x448/4, 0x00000001);
	INSTANCE_WR(ctx, 0x45c/4, 0x44400000);
	INSTANCE_WR(ctx, 0x480/4, 0xffff0000);
	for(i = 0x4d4; i< 0x4dc; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0fff0000);
	INSTANCE_WR(ctx, 0x4e0/4, 0x00011100);
	for(i = 0x4fc; i< 0x53c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x07ff0000);
	INSTANCE_WR(ctx, 0x544/4, 0x4b7fffff);
	INSTANCE_WR(ctx, 0x57c/4, 0x00000080);
	INSTANCE_WR(ctx, 0x580/4, 0x30201000);
	INSTANCE_WR(ctx, 0x584/4, 0x70605040);
	INSTANCE_WR(ctx, 0x588/4, 0xb8a89888);
	INSTANCE_WR(ctx, 0x58c/4, 0xf8e8d8c8);
	INSTANCE_WR(ctx, 0x5a0/4, 0xb0000000);
	for(i = 0x5f0; i< 0x630; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00010588);
	for(i = 0x630; i< 0x670; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00030303);
	for(i = 0x6b0; i< 0x6f0; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0008aae4);
	for(i = 0x6f0; i< 0x730; i += 4)
		INSTANCE_WR(ctx, i/4, 0x01012000);
	for(i = 0x730; i< 0x770; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00080008);
	INSTANCE_WR(ctx, 0x850/4, 0x00040000);
	INSTANCE_WR(ctx, 0x854/4, 0x00010000);
	for(i = 0x858; i< 0x868; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00040004);
	for(i = 0x15ac; i<= 0x271c ; i+= 16) {
		INSTANCE_WR(ctx, i/4 + 0, 0x10700ff9);
		INSTANCE_WR(ctx, i/4 + 1, 0x0436086c);
		INSTANCE_WR(ctx, i/4 + 2, 0x000c001b);
	}
	for(i = 0x274c; i< 0x275c; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0000ffff);
	INSTANCE_WR(ctx, 0x2ae0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x2e9c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x2eb0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x2edc/4, 0x40000000);
	INSTANCE_WR(ctx, 0x2ee0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x2ee4/4, 0x3f000000);
	INSTANCE_WR(ctx, 0x2eec/4, 0x40000000);
	INSTANCE_WR(ctx, 0x2ef0/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x2ef8/4, 0xbf800000);
	INSTANCE_WR(ctx, 0x2f00/4, 0xbf800000);
}

static void nv35_36_graph_context_init(struct drm_device *dev,
                                       struct nouveau_gpuobj *ctx)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i;

	INSTANCE_WR(ctx, 0x40c/4, 0x00000101);
	INSTANCE_WR(ctx, 0x420/4, 0x00000111);
	INSTANCE_WR(ctx, 0x424/4, 0x00000060);
	INSTANCE_WR(ctx, 0x440/4, 0x00000080);
	INSTANCE_WR(ctx, 0x444/4, 0xffff0000);
	INSTANCE_WR(ctx, 0x448/4, 0x00000001);
	INSTANCE_WR(ctx, 0x45c/4, 0x44400000);
	INSTANCE_WR(ctx, 0x488/4, 0xffff0000);
	for(i = 0x4dc; i< 0x4e4; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0fff0000);
	INSTANCE_WR(ctx, 0x4e8/4, 0x00011100);
	for(i = 0x504; i< 0x544; i += 4)
		INSTANCE_WR(ctx, i/4, 0x07ff0000);
	INSTANCE_WR(ctx, 0x54c/4, 0x4b7fffff);
	INSTANCE_WR(ctx, 0x588/4, 0x00000080);
	INSTANCE_WR(ctx, 0x58c/4, 0x30201000);
	INSTANCE_WR(ctx, 0x590/4, 0x70605040);
	INSTANCE_WR(ctx, 0x594/4, 0xb8a89888);
	INSTANCE_WR(ctx, 0x598/4, 0xf8e8d8c8);
	INSTANCE_WR(ctx, 0x5ac/4, 0xb0000000);
	for(i = 0x604; i< 0x644; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00010588);
	for(i = 0x644; i< 0x684; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00030303);
	for(i = 0x6c4; i< 0x704; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0008aae4);
	for(i = 0x704; i< 0x744; i += 4)
		INSTANCE_WR(ctx, i/4, 0x01012000);
	for(i = 0x744; i< 0x784; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00080008);
	INSTANCE_WR(ctx, 0x860/4, 0x00040000);
	INSTANCE_WR(ctx, 0x864/4, 0x00010000);
	for(i = 0x868; i< 0x878; i += 4)
		INSTANCE_WR(ctx, i/4, 0x00040004);
	for(i = 0x1f1c; i<= 0x308c ; i+= 16) {
		INSTANCE_WR(ctx, i/4 + 0, 0x10700ff9);
		INSTANCE_WR(ctx, i/4 + 1, 0x0436086c);
		INSTANCE_WR(ctx, i/4 + 2, 0x000c001b);
	}
	for(i = 0x30bc; i< 0x30cc; i += 4)
		INSTANCE_WR(ctx, i/4, 0x0000ffff);
	INSTANCE_WR(ctx, 0x3450/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x380c/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3820/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x384c/4, 0x40000000);
	INSTANCE_WR(ctx, 0x3850/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3854/4, 0x3f000000);
	INSTANCE_WR(ctx, 0x385c/4, 0x40000000);
	INSTANCE_WR(ctx, 0x3860/4, 0x3f800000);
	INSTANCE_WR(ctx, 0x3868/4, 0xbf800000);
	INSTANCE_WR(ctx, 0x3870/4, 0xbf800000);
}

int nv20_graph_create_context(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	void (*ctx_init)(struct drm_device *, struct nouveau_gpuobj *);
	unsigned int ctx_size;
	unsigned int idoffs = 0x28/4;
	int ret;

	switch (dev_priv->chipset) {
	case 0x20:
		ctx_size = NV20_GRCTX_SIZE;
		ctx_init = nv20_graph_context_init;
		idoffs = 0;
		break;
	case 0x25:
	case 0x28:
		ctx_size = NV25_GRCTX_SIZE;
		ctx_init = nv25_graph_context_init;
		break;
	case 0x2a:
		ctx_size = NV2A_GRCTX_SIZE;
		ctx_init = nv2a_graph_context_init;
		idoffs = 0;
		break;
	case 0x30:
	case 0x31:
		ctx_size = NV30_31_GRCTX_SIZE;
		ctx_init = nv30_31_graph_context_init;
		break;
	case 0x34:
		ctx_size = NV34_GRCTX_SIZE;
		ctx_init = nv34_graph_context_init;
		break;
	case 0x35:
	case 0x36:
		ctx_size = NV35_36_GRCTX_SIZE;
		ctx_init = nv35_36_graph_context_init;
		break;
	default:
		ctx_size = 0;
		ctx_init = nv35_36_graph_context_init;
		DRM_ERROR("Please contact the devs if you want your NV%x"
		          " card to work\n", dev_priv->chipset);
		return -ENOSYS;
		break;
	}

	if ((ret = nouveau_gpuobj_new_ref(dev, chan, NULL, 0, ctx_size, 16,
					  NVOBJ_FLAG_ZERO_ALLOC,
					  &chan->ramin_grctx)))
		return ret;

	/* Initialise default context values */
	ctx_init(dev, chan->ramin_grctx->gpuobj);

	/* nv20: INSTANCE_WR(chan->ramin_grctx->gpuobj, 10, chan->id<<24); */
	INSTANCE_WR(chan->ramin_grctx->gpuobj, idoffs, (chan->id<<24)|0x1);
	                                                     /* CTX_USER */

	INSTANCE_WR(dev_priv->ctx_table->gpuobj, chan->id,
			chan->ramin_grctx->instance >> 4);

	return 0;
}

void nv20_graph_destroy_context(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	if (chan->ramin_grctx)
		nouveau_gpuobj_ref_del(dev, &chan->ramin_grctx);

	INSTANCE_WR(dev_priv->ctx_table->gpuobj, chan->id, 0);
}

int nv20_graph_load_context(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	uint32_t inst;

	if (!chan->ramin_grctx)
		return -EINVAL;
	inst = chan->ramin_grctx->instance >> 4;

	NV_WRITE(NV20_PGRAPH_CHANNEL_CTX_POINTER, inst);
	NV_WRITE(NV20_PGRAPH_CHANNEL_CTX_XFER,
		 NV20_PGRAPH_CHANNEL_CTX_XFER_LOAD);
	NV_WRITE(NV10_PGRAPH_CTX_CONTROL, 0x10010100);

	nouveau_wait_for_idle(dev);
	return 0;
}

int nv20_graph_save_context(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	uint32_t inst;

	if (!chan->ramin_grctx)
		return -EINVAL;
	inst = chan->ramin_grctx->instance >> 4;

	NV_WRITE(NV20_PGRAPH_CHANNEL_CTX_POINTER, inst);
	NV_WRITE(NV20_PGRAPH_CHANNEL_CTX_XFER,
		 NV20_PGRAPH_CHANNEL_CTX_XFER_SAVE);

	nouveau_wait_for_idle(dev);
	return 0;
}

static void nv20_graph_rdi(struct drm_device *dev) {
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int i, writecount = 32;
	uint32_t rdi_index = 0x2c80000;

	if (dev_priv->chipset == 0x20) {
		rdi_index = 0x3d0000;
		writecount = 15;
	}

	NV_WRITE(NV10_PGRAPH_RDI_INDEX, rdi_index);
	for (i = 0; i < writecount; i++)
		NV_WRITE(NV10_PGRAPH_RDI_DATA, 0);

	nouveau_wait_for_idle(dev);
}

int nv20_graph_init(struct drm_device *dev) {
	struct drm_nouveau_private *dev_priv =
		(struct drm_nouveau_private *)dev->dev_private;
	uint32_t tmp, vramsz;
	int ret, i;

	NV_WRITE(NV03_PMC_ENABLE, NV_READ(NV03_PMC_ENABLE) &
			~NV_PMC_ENABLE_PGRAPH);
	NV_WRITE(NV03_PMC_ENABLE, NV_READ(NV03_PMC_ENABLE) |
			 NV_PMC_ENABLE_PGRAPH);

	if (!dev_priv->ctx_table) {
		/* Create Context Pointer Table */
		dev_priv->ctx_table_size = 32 * 4;
		if ((ret = nouveau_gpuobj_new_ref(dev, NULL, NULL, 0,
						  dev_priv->ctx_table_size, 16,
						  NVOBJ_FLAG_ZERO_ALLOC,
						  &dev_priv->ctx_table)))
			return ret;
	}

	NV_WRITE(NV20_PGRAPH_CHANNEL_CTX_TABLE,
		 dev_priv->ctx_table->instance >> 4);

	nv20_graph_rdi(dev);

	NV_WRITE(NV03_PGRAPH_INTR   , 0xFFFFFFFF);
	NV_WRITE(NV03_PGRAPH_INTR_EN, 0xFFFFFFFF);

	NV_WRITE(NV04_PGRAPH_DEBUG_0, 0xFFFFFFFF);
	NV_WRITE(NV04_PGRAPH_DEBUG_0, 0x00000000);
	NV_WRITE(NV04_PGRAPH_DEBUG_1, 0x00118700);
	NV_WRITE(NV04_PGRAPH_DEBUG_3, 0xF3CE0475); /* 0x4 = auto ctx switch */
	NV_WRITE(NV10_PGRAPH_DEBUG_4, 0x00000000);
	NV_WRITE(0x40009C           , 0x00000040);

	if (dev_priv->chipset >= 0x25) {
		NV_WRITE(0x400890, 0x00080000);
		NV_WRITE(0x400610, 0x304B1FB6);
		NV_WRITE(0x400B80, 0x18B82880);
		NV_WRITE(0x400B84, 0x44000000);
		NV_WRITE(0x400098, 0x40000080);
		NV_WRITE(0x400B88, 0x000000ff);
	} else {
		NV_WRITE(0x400880, 0x00080000); /* 0x0008c7df */
		NV_WRITE(0x400094, 0x00000005);
		NV_WRITE(0x400B80, 0x45CAA208); /* 0x45eae20e */
		NV_WRITE(0x400B84, 0x24000000);
		NV_WRITE(0x400098, 0x00000040);
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00E00038);
		NV_WRITE(NV10_PGRAPH_RDI_DATA , 0x00000030);
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00E10038);
		NV_WRITE(NV10_PGRAPH_RDI_DATA , 0x00000030);
	}

	/* copy tile info from PFB */
	for (i = 0; i < NV10_PFB_TILE__SIZE; i++) {
		NV_WRITE(0x00400904 + i*0x10, NV_READ(NV10_PFB_TLIMIT(i)));
			/* which is NV40_PGRAPH_TLIMIT0(i) ?? */
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0030+i*4);
		NV_WRITE(NV10_PGRAPH_RDI_DATA, NV_READ(NV10_PFB_TLIMIT(i)));
		NV_WRITE(0x00400908 + i*0x10, NV_READ(NV10_PFB_TSIZE(i)));
			/* which is NV40_PGRAPH_TSIZE0(i) ?? */
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0050+i*4);
		NV_WRITE(NV10_PGRAPH_RDI_DATA, NV_READ(NV10_PFB_TSIZE(i)));
		NV_WRITE(0x00400900 + i*0x10, NV_READ(NV10_PFB_TILE(i)));
			/* which is NV40_PGRAPH_TILE0(i) ?? */
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0010+i*4);
		NV_WRITE(NV10_PGRAPH_RDI_DATA, NV_READ(NV10_PFB_TILE(i)));
	}
	for (i = 0; i < 8; i++) {
		NV_WRITE(0x400980+i*4, NV_READ(0x100300+i*4));
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0090+i*4);
		NV_WRITE(NV10_PGRAPH_RDI_DATA, NV_READ(0x100300+i*4));
	}
	NV_WRITE(0x4009a0, NV_READ(0x100324));
	NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA000C);
	NV_WRITE(NV10_PGRAPH_RDI_DATA, NV_READ(0x100324));

	NV_WRITE(NV10_PGRAPH_CTX_CONTROL, 0x10000100);
	NV_WRITE(NV10_PGRAPH_STATE      , 0xFFFFFFFF);
	NV_WRITE(NV04_PGRAPH_FIFO       , 0x00000001);

	tmp = NV_READ(NV10_PGRAPH_SURFACE) & 0x0007ff00;
	NV_WRITE(NV10_PGRAPH_SURFACE, tmp);
	tmp = NV_READ(NV10_PGRAPH_SURFACE) | 0x00020100;
	NV_WRITE(NV10_PGRAPH_SURFACE, tmp);

	/* begin RAM config */
	vramsz = drm_get_resource_len(dev, 0) - 1;
	NV_WRITE(0x4009A4, NV_READ(NV04_PFB_CFG0));
	NV_WRITE(0x4009A8, NV_READ(NV04_PFB_CFG1));
	NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0000);
	NV_WRITE(NV10_PGRAPH_RDI_DATA , NV_READ(NV04_PFB_CFG0));
	NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0004);
	NV_WRITE(NV10_PGRAPH_RDI_DATA , NV_READ(NV04_PFB_CFG1));
	NV_WRITE(0x400820, 0);
	NV_WRITE(0x400824, 0);
	NV_WRITE(0x400864, vramsz-1);
	NV_WRITE(0x400868, vramsz-1);

	/* interesting.. the below overwrites some of the tile setup above.. */
	NV_WRITE(0x400B20, 0x00000000);
	NV_WRITE(0x400B04, 0xFFFFFFFF);

	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_XMIN, 0);
	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_YMIN, 0);
	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_XMAX, 0x7fff);
	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_YMAX, 0x7fff);

	return 0;
}

void nv20_graph_takedown(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	nouveau_gpuobj_ref_del(dev, &dev_priv->ctx_table);
}

int nv30_graph_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
//	uint32_t vramsz, tmp;
	int ret, i;

	NV_WRITE(NV03_PMC_ENABLE, NV_READ(NV03_PMC_ENABLE) &
			~NV_PMC_ENABLE_PGRAPH);
	NV_WRITE(NV03_PMC_ENABLE, NV_READ(NV03_PMC_ENABLE) |
			 NV_PMC_ENABLE_PGRAPH);

	if (!dev_priv->ctx_table) {
		/* Create Context Pointer Table */
		dev_priv->ctx_table_size = 32 * 4;
		if ((ret = nouveau_gpuobj_new_ref(dev, NULL, NULL, 0,
						  dev_priv->ctx_table_size, 16,
						  NVOBJ_FLAG_ZERO_ALLOC,
						  &dev_priv->ctx_table)))
			return ret;
	}

	NV_WRITE(NV20_PGRAPH_CHANNEL_CTX_TABLE,
			dev_priv->ctx_table->instance >> 4);

	NV_WRITE(NV03_PGRAPH_INTR   , 0xFFFFFFFF);
	NV_WRITE(NV03_PGRAPH_INTR_EN, 0xFFFFFFFF);

	NV_WRITE(NV04_PGRAPH_DEBUG_0, 0xFFFFFFFF);
	NV_WRITE(NV04_PGRAPH_DEBUG_0, 0x00000000);
	NV_WRITE(NV04_PGRAPH_DEBUG_1, 0x401287c0);
	NV_WRITE(0x400890, 0x01b463ff);
	NV_WRITE(NV04_PGRAPH_DEBUG_3, 0xf2de0475);
	NV_WRITE(NV10_PGRAPH_DEBUG_4, 0x00008000);
	NV_WRITE(NV04_PGRAPH_LIMIT_VIOL_PIX, 0xf04bdff6);
	NV_WRITE(0x400B80, 0x1003d888);
	NV_WRITE(0x400B84, 0x0c000000);
	NV_WRITE(0x400098, 0x00000000);
	NV_WRITE(0x40009C, 0x0005ad00);
	NV_WRITE(0x400B88, 0x62ff00ff); // suspiciously like PGRAPH_DEBUG_2
	NV_WRITE(0x4000a0, 0x00000000);
	NV_WRITE(0x4000a4, 0x00000008);
	NV_WRITE(0x4008a8, 0xb784a400);
	NV_WRITE(0x400ba0, 0x002f8685);
	NV_WRITE(0x400ba4, 0x00231f3f);
	NV_WRITE(0x4008a4, 0x40000020);

	if (dev_priv->chipset == 0x34) {
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0004);
		NV_WRITE(NV10_PGRAPH_RDI_DATA , 0x00200201);
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0008);
		NV_WRITE(NV10_PGRAPH_RDI_DATA , 0x00000008);
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00EA0000);
		NV_WRITE(NV10_PGRAPH_RDI_DATA , 0x00000032);
		NV_WRITE(NV10_PGRAPH_RDI_INDEX, 0x00E00004);
		NV_WRITE(NV10_PGRAPH_RDI_DATA , 0x00000002);
	}

	NV_WRITE(0x4000c0, 0x00000016);

	/* copy tile info from PFB */
	for (i = 0; i < NV10_PFB_TILE__SIZE; i++) {
		NV_WRITE(0x00400904 + i*0x10, NV_READ(NV10_PFB_TLIMIT(i)));
			/* which is NV40_PGRAPH_TLIMIT0(i) ?? */
		NV_WRITE(0x00400908 + i*0x10, NV_READ(NV10_PFB_TSIZE(i)));
			/* which is NV40_PGRAPH_TSIZE0(i) ?? */
		NV_WRITE(0x00400900 + i*0x10, NV_READ(NV10_PFB_TILE(i)));
			/* which is NV40_PGRAPH_TILE0(i) ?? */
	}

	NV_WRITE(NV10_PGRAPH_CTX_CONTROL, 0x10000100);
	NV_WRITE(NV10_PGRAPH_STATE      , 0xFFFFFFFF);
	NV_WRITE(0x0040075c             , 0x00000001);
	NV_WRITE(NV04_PGRAPH_FIFO       , 0x00000001);

	/* begin RAM config */
//	vramsz = drm_get_resource_len(dev, 0) - 1;
	NV_WRITE(0x4009A4, NV_READ(NV04_PFB_CFG0));
	NV_WRITE(0x4009A8, NV_READ(NV04_PFB_CFG1));
	if (dev_priv->chipset != 0x34) {
		NV_WRITE(0x400750, 0x00EA0000);
		NV_WRITE(0x400754, NV_READ(NV04_PFB_CFG0));
		NV_WRITE(0x400750, 0x00EA0004);
		NV_WRITE(0x400754, NV_READ(NV04_PFB_CFG1));
	}

#if 0
	NV_WRITE(0x400820, 0);
	NV_WRITE(0x400824, 0);
	NV_WRITE(0x400864, vramsz-1);
	NV_WRITE(0x400868, vramsz-1);

	NV_WRITE(0x400B20, 0x00000000);
	NV_WRITE(0x400B04, 0xFFFFFFFF);

	/* per-context state, doesn't belong here */
	tmp = NV_READ(NV10_PGRAPH_SURFACE) & 0x0007ff00;
	NV_WRITE(NV10_PGRAPH_SURFACE, tmp);
	tmp = NV_READ(NV10_PGRAPH_SURFACE) | 0x00020100;
	NV_WRITE(NV10_PGRAPH_SURFACE, tmp);

	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_XMIN, 0);
	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_YMIN, 0);
	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_XMAX, 0x7fff);
	NV_WRITE(NV03_PGRAPH_ABS_UCLIP_YMAX, 0x7fff);
#endif

	return 0;
}