/* * Copyright (C) 2006 Ben Skeggs. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /* * Authors: * Ben Skeggs */ #include "drmP.h" #include "drm.h" #include "nouveau_drv.h" #include "nouveau_drm.h" /* NVidia uses context objects to drive drawing operations. Context objects can be selected into 8 subchannels in the FIFO, and then used via DMA command buffers. A context object is referenced by a user defined handle (CARD32). The HW looks up graphics objects in a hash table in the instance RAM. An entry in the hash table consists of 2 CARD32. The first CARD32 contains the handle, the second one a bitfield, that contains the address of the object in instance RAM. The format of the second CARD32 seems to be: NV4 to NV30: 15: 0 instance_addr >> 4 17:16 engine (here uses 1 = graphics) 28:24 channel id (here uses 0) 31 valid (use 1) NV40: 15: 0 instance_addr >> 4 (maybe 19-0) 21:20 engine (here uses 1 = graphics) I'm unsure about the other bits, but using 0 seems to work. The key into the hash table depends on the object handle and channel id and is given as: */ static uint32_t nouveau_ramht_hash_handle(struct drm_device *dev, int channel, uint32_t handle) { struct drm_nouveau_private *dev_priv=dev->dev_private; uint32_t hash = 0; int i; for (i=32;i>0;i-=dev_priv->ramht_bits) { hash ^= (handle & ((1 << dev_priv->ramht_bits) - 1)); handle >>= dev_priv->ramht_bits; } if (dev_priv->card_type < NV_50) hash ^= channel << (dev_priv->ramht_bits - 4); hash <<= 3; DRM_DEBUG("ch%d handle=0x%08x hash=0x%08x\n", channel, handle, hash); return hash; } static int nouveau_ramht_entry_valid(struct drm_device *dev, struct nouveau_gpuobj *ramht, uint32_t offset) { struct drm_nouveau_private *dev_priv=dev->dev_private; uint32_t ctx = INSTANCE_RD(ramht, (offset + 4)/4); if (dev_priv->card_type < NV_40) return ((ctx & NV_RAMHT_CONTEXT_VALID) != 0); return (ctx != 0); } static int nouveau_ramht_insert(struct drm_device *dev, struct nouveau_gpuobj_ref *ref) { struct drm_nouveau_private *dev_priv=dev->dev_private; struct nouveau_fifo *chan = dev_priv->fifos[ref->channel]; struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL; struct nouveau_gpuobj *gpuobj = ref->gpuobj; uint32_t ctx, co, ho; if (!ramht) { DRM_ERROR("No hash table!\n"); return DRM_ERR(EINVAL); } if (dev_priv->card_type < NV_40) { ctx = NV_RAMHT_CONTEXT_VALID | (ref->instance >> 4) | (ref->channel << NV_RAMHT_CONTEXT_CHANNEL_SHIFT) | (gpuobj->engine << NV_RAMHT_CONTEXT_ENGINE_SHIFT); } else if (dev_priv->card_type < NV_50) { ctx = (ref->instance >> 4) | (ref->channel << NV40_RAMHT_CONTEXT_CHANNEL_SHIFT) | (gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT); } else { ctx = (ref->instance >> 4) | (gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT); } co = ho = nouveau_ramht_hash_handle(dev, ref->channel, ref->handle); do { if (!nouveau_ramht_entry_valid(dev, ramht, co)) { DRM_DEBUG("insert ch%d 0x%08x: h=0x%08x, c=0x%08x\n", ref->channel, co, ref->handle, ctx); INSTANCE_WR(ramht, (co + 0)/4, ref->handle); INSTANCE_WR(ramht, (co + 4)/4, ctx); return 0; } DRM_DEBUG("collision ch%d 0x%08x: h=0x%08x\n", ref->channel, co, INSTANCE_RD(ramht, co/4)); co += 8; if (co >= dev_priv->ramht_size) co = 0; } while (co != ho); DRM_ERROR("RAMHT space exhausted. ch=%d\n", ref->channel); return DRM_ERR(ENOMEM); } static void nouveau_ramht_remove(struct drm_device *dev, struct nouveau_gpuobj_ref *ref) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo *chan = dev_priv->fifos[ref->channel]; struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL; uint32_t co, ho; if (!ramht) { DRM_ERROR("No hash table!\n"); return; } co = ho = nouveau_ramht_hash_handle(dev, ref->channel, ref->handle); do { if (nouveau_ramht_entry_valid(dev, ramht, co) && (ref->handle == INSTANCE_RD(ramht, (co/4)))) { DRM_DEBUG("remove ch%d 0x%08x: h=0x%08x, c=0x%08x\n", ref->channel, co, ref->handle, INSTANCE_RD(ramht, (co + 4))); INSTANCE_WR(ramht, (co + 0)/4, 0x00000000); INSTANCE_WR(ramht, (co + 4)/4, 0x00000000); return; } co += 8; if (co >= dev_priv->ramht_size) co = 0; } while (co != ho); DRM_ERROR("RAMHT entry not found. ch=%d, handle=0x%08x\n", ref->channel, ref->handle); } int nouveau_gpuobj_new(struct drm_device *dev, int channel, int size, int align, uint32_t flags, struct nouveau_gpuobj **gpuobj_ret) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_engine_func *engine = &dev_priv->Engine; struct nouveau_fifo *chan = NULL; struct nouveau_gpuobj *gpuobj; struct mem_block *pramin = NULL; int ret; DRM_DEBUG("ch%d size=%d align=%d flags=0x%08x\n", channel, size, align, flags); if (!dev_priv || !gpuobj_ret || *gpuobj_ret != NULL) return DRM_ERR(EINVAL); if (channel >= 0) { if (channel > nouveau_fifo_number(dev)) return DRM_ERR(EINVAL); chan = dev_priv->fifos[channel]; } gpuobj = drm_calloc(1, sizeof(*gpuobj), DRM_MEM_DRIVER); if (!gpuobj) return DRM_ERR(ENOMEM); DRM_DEBUG("gpuobj %p\n", gpuobj); gpuobj->flags = flags; gpuobj->im_channel = channel; /* Choose between global instmem heap, and per-channel private * instmem heap. On ramin_heap) { DRM_DEBUG("private heap\n"); pramin = chan->ramin_heap; } else if (dev_priv->card_type < NV_50) { DRM_DEBUG("global heap fallback\n"); pramin = dev_priv->ramin_heap; } } else { DRM_DEBUG("global heap\n"); pramin = dev_priv->ramin_heap; } if (!pramin) { DRM_ERROR("No PRAMIN heap!\n"); return DRM_ERR(EINVAL); } if (!chan && (ret = engine->instmem.populate(dev, gpuobj, &size))) { nouveau_gpuobj_del(dev, &gpuobj); return ret; } /* Allocate a chunk of the PRAMIN aperture */ gpuobj->im_pramin = nouveau_mem_alloc_block(pramin, size, drm_order(align), (DRMFILE)-2); if (!gpuobj->im_pramin) { nouveau_gpuobj_del(dev, &gpuobj); return DRM_ERR(ENOMEM); } gpuobj->im_pramin->flags = NOUVEAU_MEM_INSTANCE; if (!chan && (ret = engine->instmem.bind(dev, gpuobj))) { nouveau_gpuobj_del(dev, &gpuobj); return ret; } if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) { int i; for (i = 0; i < gpuobj->im_pramin->size; i += 4) INSTANCE_WR(gpuobj, i/4, 0); } if (dev_priv->gpuobj_all) { gpuobj->next = dev_priv->gpuobj_all; gpuobj->next->prev = gpuobj; } dev_priv->gpuobj_all = gpuobj; *gpuobj_ret = gpuobj; return 0; } void nouveau_gpuobj_takedown(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj = NULL; DRM_DEBUG("\n"); while ((gpuobj = dev_priv->gpuobj_all)) { DRM_ERROR("gpuobj %p still exists at takedown, refs=%d\n", gpuobj, gpuobj->refcount); gpuobj->refcount = 0; nouveau_gpuobj_del(dev, &gpuobj); } } int nouveau_gpuobj_del(struct drm_device *dev, struct nouveau_gpuobj **pgpuobj) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_engine_func *engine = &dev_priv->Engine; struct nouveau_gpuobj *gpuobj; DRM_DEBUG("gpuobj %p\n", pgpuobj ? *pgpuobj : NULL); if (!dev_priv || !pgpuobj || !(*pgpuobj)) return DRM_ERR(EINVAL); gpuobj = *pgpuobj; if (gpuobj->refcount != 0) { DRM_ERROR("gpuobj refcount is %d\n", gpuobj->refcount); return DRM_ERR(EINVAL); } engine->instmem.clear(dev, gpuobj); if (gpuobj->im_pramin) { if (gpuobj->flags & NVOBJ_FLAG_FAKE) drm_free(gpuobj->im_pramin, sizeof(*gpuobj->im_pramin), DRM_MEM_DRIVER); else nouveau_mem_free_block(gpuobj->im_pramin); } if (gpuobj->next) gpuobj->next->prev = gpuobj->prev; if (gpuobj->prev) gpuobj->prev->next = gpuobj->next; else dev_priv->gpuobj_all = gpuobj->next; *pgpuobj = NULL; drm_free(gpuobj, sizeof(*gpuobj), DRM_MEM_DRIVER); return 0; } static int nouveau_gpuobj_instance_get(struct drm_device *dev, int channel, struct nouveau_gpuobj *gpuobj, uint32_t *inst) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *cpramin; /* card_type < NV_50) { *inst = gpuobj->im_pramin->start; return 0; } if ((channel > 0) && gpuobj->im_channel != channel) { DRM_ERROR("Channel mismatch: obj %d, ref %d\n", gpuobj->im_channel, channel); return DRM_ERR(EINVAL); } /* NV50 channel-local instance */ if (channel > 0) { cpramin = dev_priv->fifos[channel]->ramin->gpuobj; *inst = gpuobj->im_pramin->start - cpramin->im_pramin->start; return 0; } /* NV50 global (VRAM) instance */ if (gpuobj->im_channel < 0) { /* ...from global heap */ if (!gpuobj->im_backing) { DRM_ERROR("AII, no VRAM backing gpuobj\n"); return DRM_ERR(EINVAL); } *inst = gpuobj->im_backing->start; return 0; } else { /* ...from local heap */ cpramin = dev_priv->fifos[gpuobj->im_channel]->ramin->gpuobj; *inst = cpramin->im_backing->start + (gpuobj->im_pramin->start - cpramin->im_pramin->start); return 0; } return DRM_ERR(EINVAL); } int nouveau_gpuobj_ref_add(struct drm_device *dev, int channel, uint32_t handle, struct nouveau_gpuobj *gpuobj, struct nouveau_gpuobj_ref **ref_ret) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo *chan = NULL; struct nouveau_gpuobj_ref *ref; uint32_t instance; int ret; DRM_DEBUG("ch%d h=0x%08x gpuobj=%p\n", channel, handle, gpuobj); if (!dev_priv || !gpuobj || (ref_ret && *ref_ret != NULL)) return DRM_ERR(EINVAL); if (channel >= 0) { if (channel > nouveau_fifo_number(dev)) return DRM_ERR(EINVAL); chan = dev_priv->fifos[channel]; } else if (!ref_ret) return DRM_ERR(EINVAL); ret = nouveau_gpuobj_instance_get(dev, channel, gpuobj, &instance); if (ret) return ret; ref = drm_calloc(1, sizeof(*ref), DRM_MEM_DRIVER); if (!ref) return DRM_ERR(ENOMEM); ref->gpuobj = gpuobj; ref->channel = channel; ref->instance = instance; if (!ref_ret) { ref->handle = handle; ret = nouveau_ramht_insert(dev, ref); if (ret) { drm_free(ref, sizeof(*ref), DRM_MEM_DRIVER); return ret; } ref->next = chan->ramht_refs; chan->ramht_refs = ref; } else { ref->handle = ~0; *ref_ret = ref; } ref->gpuobj->refcount++; return 0; } int nouveau_gpuobj_ref_del(struct drm_device *dev, struct nouveau_gpuobj_ref **pref) { struct nouveau_gpuobj_ref *ref; DRM_DEBUG("ref %p\n", pref ? *pref : NULL); if (!dev || !pref || *pref == NULL) return DRM_ERR(EINVAL); ref = *pref; if (ref->handle != ~0) nouveau_ramht_remove(dev, ref); if (ref->gpuobj) { ref->gpuobj->refcount--; if (ref->gpuobj->refcount == 0) { if (!(ref->gpuobj->flags & NVOBJ_FLAG_ALLOW_NO_REFS)) nouveau_gpuobj_del(dev, &ref->gpuobj); } } *pref = NULL; drm_free(ref, sizeof(ref), DRM_MEM_DRIVER); return 0; } int nouveau_gpuobj_new_ref(struct drm_device *dev, int oc, int rc, uint32_t handle, int size, int align, uint32_t flags, struct nouveau_gpuobj_ref **ref) { struct nouveau_gpuobj *gpuobj = NULL; int ret; if ((ret = nouveau_gpuobj_new(dev, oc, size, align, flags, &gpuobj))) return ret; if ((ret = nouveau_gpuobj_ref_add(dev, rc, handle, gpuobj, ref))) { nouveau_gpuobj_del(dev, &gpuobj); return ret; } return 0; } static int nouveau_gpuobj_ref_find(struct drm_device *dev, int channel, uint32_t handle, struct nouveau_gpuobj_ref **ref_ret) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo *chan = dev_priv->fifos[channel]; struct nouveau_gpuobj_ref *ref = chan->ramht_refs; while (ref) { if (ref->handle == handle) { if (ref_ret) *ref_ret = ref; return 0; } ref = ref->next; } return DRM_ERR(EINVAL); } int nouveau_gpuobj_new_fake(struct drm_device *dev, uint32_t offset, uint32_t size, uint32_t flags, struct nouveau_gpuobj **pgpuobj, struct nouveau_gpuobj_ref **pref) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *gpuobj = NULL; int i; DRM_DEBUG("offset=0x%08x size=0x%08x flags=0x%08x\n", offset, size, flags); gpuobj = drm_calloc(1, sizeof(*gpuobj), DRM_MEM_DRIVER); if (!gpuobj) return DRM_ERR(ENOMEM); DRM_DEBUG("gpuobj %p\n", gpuobj); gpuobj->im_channel = -1; gpuobj->flags = flags | NVOBJ_FLAG_FAKE; gpuobj->im_pramin = drm_calloc(1, sizeof(struct mem_block), DRM_MEM_DRIVER); if (!gpuobj->im_pramin) { nouveau_gpuobj_del(dev, &gpuobj); return DRM_ERR(ENOMEM); } gpuobj->im_pramin->start = offset; gpuobj->im_pramin->size = size; if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) { for (i = 0; i < gpuobj->im_pramin->size; i += 4) INSTANCE_WR(gpuobj, i/4, 0); } if (pref) { if ((i = nouveau_gpuobj_ref_add(dev, -1, 0, gpuobj, pref))) { nouveau_gpuobj_del(dev, &gpuobj); return i; } } if (pgpuobj) *pgpuobj = gpuobj; return 0; } static int nouveau_gpuobj_class_instmem_size(struct drm_device *dev, int class) { struct drm_nouveau_private *dev_priv = dev->dev_private; /*XXX: dodgy hack for now */ if (dev_priv->card_type >= NV_50) return 24; if (dev_priv->card_type >= NV_40) return 32; return 16; } /* DMA objects are used to reference a piece of memory in the framebuffer, PCI or AGP address space. Each object is 16 bytes big and looks as follows: entry[0] 11:0 class (seems like I can always use 0 here) 12 page table present? 13 page entry linear? 15:14 access: 0 rw, 1 ro, 2 wo 17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP 31:20 dma adjust (bits 0-11 of the address) entry[1] dma limit (size of transfer) entry[X] 1 0 readonly, 1 readwrite 31:12 dma frame address of the page (bits 12-31 of the address) entry[N] page table terminator, same value as the first pte, as does nvidia rivatv uses 0xffffffff Non linear page tables need a list of frame addresses afterwards, the rivatv project has some info on this. The method below creates a DMA object in instance RAM and returns a handle to it that can be used to set up context objects. */ int nouveau_gpuobj_dma_new(struct drm_device *dev, int channel, int class, uint64_t offset, uint64_t size, int access, int target, struct nouveau_gpuobj **gpuobj) { struct drm_nouveau_private *dev_priv = dev->dev_private; int ret; uint32_t is_scatter_gather = 0; /* Total number of pages covered by the request. */ const unsigned int page_count = (size + PAGE_SIZE - 1) / PAGE_SIZE; DRM_DEBUG("ch%d class=0x%04x offset=0x%llx size=0x%llx\n", channel, class, offset, size); DRM_DEBUG("access=%d target=%d\n", access, target); switch (target) { case NV_DMA_TARGET_AGP: offset += dev_priv->agp_phys; break; case NV_DMA_TARGET_PCI_NONLINEAR: /*assume the "offset" is a virtual memory address*/ is_scatter_gather = 1; /*put back the right value*/ target = NV_DMA_TARGET_PCI; break; default: break; } ret = nouveau_gpuobj_new(dev, channel, is_scatter_gather ? ((page_count << 2) + 12) : nouveau_gpuobj_class_instmem_size(dev, class), 16, NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE, gpuobj); if (ret) { DRM_ERROR("Error creating gpuobj: %d\n", ret); return ret; } if (dev_priv->card_type < NV_50) { uint32_t frame, adjust, pte_flags = 0; adjust = offset & 0x00000fff; if (access != NV_DMA_ACCESS_RO) pte_flags |= (1<<1); if ( ! is_scatter_gather ) { frame = offset & ~0x00000fff; INSTANCE_WR(*gpuobj, 0, ((1<<12) | (1<<13) | (adjust << 20) | (access << 14) | (target << 16) | class)); INSTANCE_WR(*gpuobj, 1, size - 1); INSTANCE_WR(*gpuobj, 2, frame | pte_flags); INSTANCE_WR(*gpuobj, 3, frame | pte_flags); } else { /* Intial page entry in the scatter-gather area that * corresponds to the base offset */ unsigned int idx = offset / PAGE_SIZE; uint32_t instance_offset; unsigned int i; if ((idx + page_count) > dev->sg->pages) { DRM_ERROR("Requested page range exceedes " "allocated scatter-gather range!"); return DRM_ERR(E2BIG); } DRM_DEBUG("Creating PCI DMA object using virtual zone starting at %#llx, size %d\n", offset, (uint32_t)size); INSTANCE_WR(*gpuobj, 0, ((1<<12) | (0<<13) | (adjust << 20) | (access << 14) | (target << 16) | class)); INSTANCE_WR(*gpuobj, 1, (uint32_t) size-1); /*write starting at the third dword*/ instance_offset = 2; /*for each PAGE, get its bus address, fill in the page table entry, and advance*/ for (i = 0; i < page_count; i++) { if (dev->sg->busaddr[idx] == 0) { dev->sg->busaddr[idx] = pci_map_page(dev->pdev, dev->sg->pagelist[idx], 0, DMA_31BIT_MASK, DMA_BIDIRECTIONAL); if (dev->sg->busaddr[idx] == 0) { return DRM_ERR(ENOMEM); } } frame = (uint32_t) dev->sg->busaddr[idx]; INSTANCE_WR(*gpuobj, instance_offset, frame | pte_flags); idx++; instance_offset ++; } } } else { INSTANCE_WR(*gpuobj, 0, 0x00190000 | class); INSTANCE_WR(*gpuobj, 1, offset + size - 1); INSTANCE_WR(*gpuobj, 2, offset); INSTANCE_WR(*gpuobj, 5, 0x00010000); } (*gpuobj)->engine = NVOBJ_ENGINE_SW; (*gpuobj)->class = class; return 0; } /* Context objects in the instance RAM have the following structure. * On NV40 they are 32 byte long, on NV30 and smaller 16 bytes. NV4 - NV30: entry[0] 11:0 class 12 chroma key enable 13 user clip enable 14 swizzle enable 17:15 patch config: scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre 18 synchronize enable 19 endian: 1 big, 0 little 21:20 dither mode 23 single step enable 24 patch status: 0 invalid, 1 valid 25 context_surface 0: 1 valid 26 context surface 1: 1 valid 27 context pattern: 1 valid 28 context rop: 1 valid 29,30 context beta, beta4 entry[1] 7:0 mono format 15:8 color format 31:16 notify instance address entry[2] 15:0 dma 0 instance address 31:16 dma 1 instance address entry[3] dma method traps NV40: No idea what the exact format is. Here's what can be deducted: entry[0]: 11:0 class (maybe uses more bits here?) 17 user clip enable 21:19 patch config 25 patch status valid ? entry[1]: 15:0 DMA notifier (maybe 20:0) entry[2]: 15:0 DMA 0 instance (maybe 20:0) 24 big endian entry[3]: 15:0 DMA 1 instance (maybe 20:0) entry[4]: entry[5]: set to 0? */ int nouveau_gpuobj_gr_new(struct drm_device *dev, int channel, int class, struct nouveau_gpuobj **gpuobj) { struct drm_nouveau_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG("ch%d class=0x%04x\n", channel, class); ret = nouveau_gpuobj_new(dev, channel, nouveau_gpuobj_class_instmem_size(dev, class), 16, NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE, gpuobj); if (ret) { DRM_ERROR("Error creating gpuobj: %d\n", ret); return ret; } if (dev_priv->card_type >= NV_50) { INSTANCE_WR(*gpuobj, 0, class); INSTANCE_WR(*gpuobj, 5, 0x00010000); } else { switch (class) { case NV_CLASS_NULL: INSTANCE_WR(*gpuobj, 0, 0x00001030); INSTANCE_WR(*gpuobj, 1, 0xFFFFFFFF); break; default: if (dev_priv->card_type >= NV_40) { INSTANCE_WR(*gpuobj, 0, class); #ifdef __BIG_ENDIAN INSTANCE_WR(*gpuobj, 2, 0x01000000); #endif } else { #ifdef __BIG_ENDIAN INSTANCE_WR(*gpuobj, 0, class | 0x00080000); #else INSTANCE_WR(*gpuobj, 0, class); #endif } } } (*gpuobj)->engine = NVOBJ_ENGINE_GR; (*gpuobj)->class = class; return 0; } static int nouveau_gpuobj_channel_init_pramin(struct drm_device *dev, int channel) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo *chan = dev_priv->fifos[channel]; struct nouveau_gpuobj *pramin = NULL; int size, base, ret; DRM_DEBUG("ch%d\n", channel); /* Base amount for object storage (4KiB enough?) */ size = 0x1000; base = 0; /* PGRAPH context */ if (dev_priv->card_type == NV_50) { /* Various fixed table thingos */ size += 0x1400; /* mostly unknown stuff */ size += 0x4000; /* vm pd */ base = 0x6000; /* RAMHT, not sure about setting size yet, 32KiB to be safe */ size += 0x8000; /* RAMFC */ size += 0x1000; /* PGRAPH context */ size += 0x60000; } DRM_DEBUG("ch%d PRAMIN size: 0x%08x bytes, base alloc=0x%08x\n", channel, size, base); ret = nouveau_gpuobj_new_ref(dev, -1, -1, 0, size, 0x1000, 0, &chan->ramin); if (ret) { DRM_ERROR("Error allocating channel PRAMIN: %d\n", ret); return ret; } pramin = chan->ramin->gpuobj; ret = nouveau_mem_init_heap(&chan->ramin_heap, pramin->im_pramin->start + base, size); if (ret) { DRM_ERROR("Error creating PRAMIN heap: %d\n", ret); nouveau_gpuobj_ref_del(dev, &chan->ramin); return ret; } return 0; } int nouveau_gpuobj_channel_init(struct drm_device *dev, int channel, uint32_t vram_h, uint32_t tt_h) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo *chan = dev_priv->fifos[channel]; struct nouveau_gpuobj *vram = NULL, *tt = NULL; int ret; DRM_DEBUG("ch%d vram=0x%08x tt=0x%08x\n", channel, vram_h, tt_h); /* Reserve a block of PRAMIN for the channel *XXX: maybe on card_type == NV_50) { ret = nouveau_gpuobj_channel_init_pramin(dev, channel); if (ret) return ret; } /* RAMHT */ if (dev_priv->card_type < NV_50) { ret = nouveau_gpuobj_ref_add(dev, -1, 0, dev_priv->ramht, &chan->ramht); if (ret) return ret; } else { ret = nouveau_gpuobj_new_ref(dev, channel, channel, 0, 0x8000, 16, NVOBJ_FLAG_ZERO_ALLOC, &chan->ramht); if (ret) return ret; } /* VRAM ctxdma */ if ((ret = nouveau_gpuobj_dma_new(dev, channel, NV_CLASS_DMA_IN_MEMORY, 0, dev_priv->fb_available_size, NV_DMA_ACCESS_RW, NV_DMA_TARGET_VIDMEM, &vram))) { DRM_ERROR("Error creating VRAM ctxdma: %d\n", ret); return ret; } if ((ret = nouveau_gpuobj_ref_add(dev, channel, vram_h, vram, NULL))) { DRM_ERROR("Error referencing VRAM ctxdma: %d\n", ret); return ret; } if (dev_priv->agp_heap) { /* AGPGART ctxdma */ if ((ret = nouveau_gpuobj_dma_new(dev, channel, NV_CLASS_DMA_IN_MEMORY, 0, dev_priv->agp_available_size, NV_DMA_ACCESS_RW, NV_DMA_TARGET_AGP, &tt))) { DRM_ERROR("Error creating AGP TT ctxdma: %d\n", DRM_ERR(ENOMEM)); return DRM_ERR(ENOMEM); } ret = nouveau_gpuobj_ref_add(dev, channel, tt_h, tt, NULL); if (ret) { DRM_ERROR("Error referencing AGP TT ctxdma: %d\n", ret); return ret; } } else if ( dev_priv->pci_heap) { if (dev_priv -> card_type >= NV_50 ) return 0; /*no PCIGART for NV50*/ /*PCI*/ if((ret = nouveau_gpuobj_dma_new(dev, channel, NV_CLASS_DMA_IN_MEMORY, 0, dev->sg->pages * PAGE_SIZE, NV_DMA_ACCESS_RW, NV_DMA_TARGET_PCI_NONLINEAR, &tt))) { DRM_ERROR("Error creating PCI TT ctxdma: %d\n", DRM_ERR(ENOMEM)); return 0; //this is noncritical } ret = nouveau_gpuobj_ref_add(dev, channel, tt_h, tt, NULL); if (ret) { DRM_ERROR("Error referencing PCI TT ctxdma: %d\n", ret); return ret; } } return 0; } void nouveau_gpuobj_channel_takedown(struct drm_device *dev, int channel) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fifo *chan = dev_priv->fifos[channel]; struct nouveau_gpuobj_ref *ref; DRM_DEBUG("ch%d\n", channel); while ((ref = chan->ramht_refs)) { chan->ramht_refs = ref->next; nouveau_gpuobj_ref_del(dev, &ref); } nouveau_gpuobj_ref_del(dev, &chan->ramht); if (chan->ramin_heap) nouveau_mem_takedown(&chan->ramin_heap); if (chan->ramin) nouveau_gpuobj_ref_del(dev, &chan->ramin); } int nouveau_ioctl_grobj_alloc(DRM_IOCTL_ARGS) { DRM_DEVICE; struct drm_nouveau_grobj_alloc init; struct nouveau_gpuobj *gr = NULL; int ret; DRM_COPY_FROM_USER_IOCTL(init, (struct drm_nouveau_grobj_alloc_t __user*)data, sizeof(init)); if (!nouveau_fifo_owner(dev, filp, init.channel)) { DRM_ERROR("pid %d doesn't own channel %d\n", DRM_CURRENTPID, init.channel); return DRM_ERR(EINVAL); } //FIXME: check args, only allow trusted objects to be created if (init.handle == ~0) return DRM_ERR(EINVAL); if (nouveau_gpuobj_ref_find(dev, init.channel, init.handle, NULL) == 0) return DRM_ERR(EEXIST); if ((ret = nouveau_gpuobj_gr_new(dev, init.channel, init.class, &gr))) { DRM_ERROR("Error creating gr object: %d (%d/0x%08x)\n", ret, init.channel, init.handle); return ret; } if ((ret = nouveau_gpuobj_ref_add(dev, init.channel, init.handle, gr, NULL))) { DRM_ERROR("Error referencing gr object: %d (%d/0x%08x\n)", ret, init.channel, init.handle); nouveau_gpuobj_del(dev, &gr); return ret; } return 0; }