/linux-core/

' href='#n592'>592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/**************************************************************************
 *
 * This kernel module is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 **************************************************************************/
/*
 * This code provides access to unexported mm kernel features. It is necessary
 * to use the new DRM memory manager code with kernels that don't support it
 * directly.
 *
 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
 *          Linux kernel mm subsystem authors.
 *          (Most code taken from there).
 */

#include "drmP.h"

#if defined(CONFIG_X86) && (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15))

/*
 * These have bad performance in the AGP module for the indicated kernel versions.
 */

int drm_map_page_into_agp(struct page *page)
{
        int i;
        i = change_page_attr(page, 1, PAGE_KERNEL_NOCACHE);
        /* Caller's responsibility to call global_flush_tlb() for
         * performance reasons */
        return i;
}

int drm_unmap_page_from_agp(struct page *page)
{
        int i;
        i = change_page_attr(page, 1, PAGE_KERNEL);
        /* Caller's responsibility to call global_flush_tlb() for
         * performance reasons */
        return i;
}
#endif


#if  (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))

/*
 * The protection map was exported in 2.6.19
 */

pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
#ifdef MODULE
	static pgprot_t drm_protection_map[16] = {
		__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
		__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
	};

	return drm_protection_map[vm_flags & 0x0F];
#else
	extern pgprot_t protection_map[];
	return protection_map[vm_flags & 0x0F];
#endif
};
#endif


#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15))

/*
 * vm code for kernels below 2.6.15 in which version a major vm write
 * occured. This implement a simple straightforward
 * version similar to what's going to be
 * in kernel 2.6.19+
 * Kernels below 2.6.15 use nopage whereas 2.6.19 and upwards use
 * nopfn.
 */

static struct {
	spinlock_t lock;
	struct page *dummy_page;
	atomic_t present;
} drm_np_retry =
{SPIN_LOCK_UNLOCKED, NOPAGE_OOM, ATOMIC_INIT(0)};


static struct page *drm_bo_vm_fault(struct vm_area_struct *vma,
				    struct fault_data *data);


struct page * get_nopage_retry(void)
{
	if (atomic_read(&drm_np_retry.present) == 0) {
		struct page *page = alloc_page(GFP_KERNEL);
		if (!page)
			return NOPAGE_OOM;
		spin_lock(&drm_np_retry.lock);
		drm_np_retry.dummy_page = page;
		atomic_set(&drm_np_retry.present,1);
		spin_unlock(&drm_np_retry.lock);
	}
	get_page(drm_np_retry.dummy_page);
	return drm_np_retry.dummy_page;
}

void free_nopage_retry(void)
{
	if (atomic_read(&drm_np_retry.present) == 1) {
		spin_lock(&drm_np_retry.lock);
		__free_page(drm_np_retry.dummy_page);
		drm_np_retry.dummy_page = NULL;
		atomic_set(&drm_np_retry.present, 0);
		spin_unlock(&drm_np_retry.lock);
	}
}

struct page *drm_bo_vm_nopage(struct vm_area_struct *vma,
			       unsigned long address,
			       int *type)
{
	struct fault_data data;

	if (type)
		*type = VM_FAULT_MINOR;

	data.address = address;
	data.vma = vma;
	drm_bo_vm_fault(vma, &data);
	switch (data.type) {
	case VM_FAULT_OOM:
		return NOPAGE_OOM;
	case VM_FAULT_SIGBUS:
		return NOPAGE_SIGBUS;
	default:
		break;
	}

	return NOPAGE_REFAULT;
}

#endif

#if !defined(DRM_FULL_MM_COMPAT) && \
  ((LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)) || \
   (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)))

static int drm_pte_is_clear(struct vm_area_struct *vma,
			    unsigned long addr)
{
	struct mm_struct *mm = vma->vm_mm;
	int ret = 1;
	pte_t *pte;
	pmd_t *pmd;
	pud_t *pud;
	pgd_t *pgd;

	spin_lock(&mm->page_table_lock);
	pgd = pgd_offset(mm, addr);
	if (pgd_none(*pgd))
		goto unlock;
	pud = pud_offset(pgd, addr);
        if (pud_none(*pud))
		goto unlock;
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
		goto unlock;
	pte = pte_offset_map(pmd, addr);
	if (!pte)
		goto unlock;
	ret = pte_none(*pte);
	pte_unmap(pte);
 unlock:
	spin_unlock(&mm->page_table_lock);
	return ret;
}

static int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
		  unsigned long pfn)
{
	int ret;
	if (!drm_pte_is_clear(vma, addr))
		return -EBUSY;

	ret = io_remap_pfn_range(vma, addr, pfn, PAGE_SIZE, vma->vm_page_prot);
	return ret;
}


static struct page *drm_bo_vm_fault(struct vm_area_struct *vma,
				    struct fault_data *data)
{
	unsigned long address = data->address;
	struct drm_buffer_object *bo = (struct drm_buffer_object *) vma->vm_private_data;
	unsigned long page_offset;
	struct page *page = NULL;
	struct drm_ttm *ttm;
	struct drm_device *dev;
	unsigned long pfn;
	int err;
	unsigned long bus_base;
	unsigned long bus_offset;
	unsigned long bus_size;

	dev = bo->dev;
	drm_bo_read_lock(&dev->bm.bm_lock, 0);

	mutex_lock(&bo->mutex);

	err = drm_bo_wait(bo, 0, 1, 0);
	if (err) {
		data->type = (err == -EAGAIN) ?
			VM_FAULT_MINOR : VM_FAULT_SIGBUS;
		goto out_unlock;
	}


	/*
	 * If buffer happens to be in a non-mappable location,
	 * move it to a mappable.
	 */

	if (!(bo->mem.flags & DRM_BO_FLAG_MAPPABLE)) {
		unsigned long _end = jiffies + 3*DRM_HZ;
		uint32_t new_mask = bo->mem.proposed_flags |
			DRM_BO_FLAG_MAPPABLE |
			DRM_BO_FLAG_FORCE_MAPPABLE;

		do {
			err = drm_bo_move_buffer(bo, new_mask, 0, 0);
		} while((err == -EAGAIN) && !time_after_eq(jiffies, _end));

		if (err) {
			DRM_ERROR("Timeout moving buffer to mappable location.\n");
			data->type = VM_FAULT_SIGBUS;
			goto out_unlock;
		}
	}

	if (address > vma->vm_end) {
		data->type = VM_FAULT_SIGBUS;
		goto out_unlock;
	}

	dev = bo->dev;
	err = drm_bo_pci_offset(dev, &bo->mem, &bus_base, &bus_offset,
				&bus_size);

	if (err) {
		data->type = VM_FAULT_SIGBUS;
		goto out_unlock;
	}

	page_offset = (address - vma->vm_start) >> PAGE_SHIFT;

	if (bus_size) {
		struct drm_mem_type_manager *man = &dev->bm.man[bo->mem.mem_type];

		pfn = ((bus_base + bus_offset) >> PAGE_SHIFT) + page_offset;
		vma->vm_page_prot = drm_io_prot(man->drm_bus_maptype, vma);
	} else {
		ttm = bo->ttm;

		drm_ttm_fixup_caching(ttm);
		page = drm_ttm_get_page(ttm, page_offset);
		if (!page) {
			data->type = VM_FAULT_OOM;
			goto out_unlock;
		}
		pfn = page_to_pfn(page);
		vma->vm_page_prot = (bo->mem.flags & DRM_BO_FLAG_CACHED) ?
			vm_get_page_prot(vma->vm_flags) :
			drm_io_prot(_DRM_TTM, vma);
	}

	err = vm_insert_pfn(vma, address, pfn);

	if (!err || err == -EBUSY)
		data->type = VM_FAULT_MINOR;
	else
		data->type = VM_FAULT_OOM;
out_unlock:
	mutex_unlock(&bo->mutex);
	drm_bo_read_unlock(&dev->bm.bm_lock);
	return NULL;
}

#endif

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)) && \
  !defined(DRM_FULL_MM_COMPAT)

/**
 */

unsigned long drm_bo_vm_nopfn(struct vm_area_struct * vma,
			   unsigned long address)
{
	struct fault_data data;
	data.address = address;

	(void) drm_bo_vm_fault(vma, &data);
	if (data.type == VM_FAULT_OOM)
		return NOPFN_OOM;
	else if (data.type == VM_FAULT_SIGBUS)
		return NOPFN_SIGBUS;

	/*
	 * pfn already set.
	 */

	return 0;
}
#endif


#ifdef DRM_ODD_MM_COMPAT

/*
 * VM compatibility code for 2.6.15-2.6.18. This code implements a complicated
 * workaround for a single BUG statement in do_no_page in these versions. The
 * tricky thing is that we need to take the mmap_sem in exclusive mode for _all_
 * vmas mapping the ttm, before dev->struct_mutex is taken. The way we do this is to
 * check first take the dev->struct_mutex, and then trylock all mmap_sems. If this
 * fails for a single mmap_sem, we have to release all sems and the dev->struct_mutex,
 * release the cpu and retry. We also need to keep track of all vmas mapping the ttm.
 * phew.
 */

typedef struct p_mm_entry {
	struct list_head head;
	struct mm_struct *mm;
	atomic_t refcount;
        int locked;
} p_mm_entry_t;

typedef struct vma_entry {
	struct list_head head;
	struct vm_area_struct *vma;
} vma_entry_t;


struct page *drm_bo_vm_nopage(struct vm_area_struct *vma,
			       unsigned long address,
			       int *type)
{
	struct drm_buffer_object *bo = (struct drm_buffer_object *) vma->vm_private_data;
	unsigned long page_offset;
	struct page *page;
	struct drm_ttm *ttm;
	struct drm_device *dev;

	mutex_lock(&bo->mutex);

	if (type)
		*type = VM_FAULT_MINOR;

	if (address > vma->vm_end) {
		page = NOPAGE_SIGBUS;
		goto out_unlock;
	}

	dev = bo->dev;

	if (drm_mem_reg_is_pci(dev, &bo->mem)) {
		DRM_ERROR("Invalid compat nopage.\n");
		page = NOPAGE_SIGBUS;
		goto out_unlock;
	}

	ttm = bo->ttm;
	drm_ttm_fixup_caching(ttm);
	page_offset = (address - vma->vm_start) >> PAGE_SHIFT;
	page = drm_ttm_get_page(ttm, page_offset);
	if (!page) {
		page = NOPAGE_OOM;
		goto out_unlock;
	}

	get_page(page);
out_unlock:
	mutex_unlock(&bo->mutex);
	return page;
}




int drm_bo_map_bound(struct vm_area_struct *vma)
{
	struct drm_buffer_object *bo = (struct drm_buffer_object *)vma->vm_private_data;
	int ret = 0;
	unsigned long bus_base;
	unsigned long bus_offset;
	unsigned long bus_size;

	ret = drm_bo_pci_offset(bo->dev, &bo->mem, &bus_base,
				&bus_offset, &bus_size);
	BUG_ON(ret);

	if (bus_size) {
		struct drm_mem_type_manager *man = &bo->dev->bm.man[bo->mem.mem_type];
		unsigned long pfn = (bus_base + bus_offset) >> PAGE_SHIFT;
		pgprot_t pgprot = drm_io_prot(man->drm_bus_maptype, vma);
		ret = io_remap_pfn_range(vma, vma->vm_start, pfn,
					 vma->vm_end - vma->vm_start,
					 pgprot);
	}

	return ret;
}


int drm_bo_add_vma(struct drm_buffer_object * bo, struct vm_area_struct *vma)
{
	p_mm_entry_t *entry, *n_entry;
	vma_entry_t *v_entry;
	struct mm_struct *mm = vma->vm_mm;

	v_entry = drm_ctl_alloc(sizeof(*v_entry), DRM_MEM_BUFOBJ);
	if (!v_entry) {
		DRM_ERROR("Allocation of vma pointer entry failed\n");
		return -ENOMEM;
	}
	v_entry->vma = vma;

	list_add_tail(&v_entry->head, &bo->vma_list);

	list_for_each_entry(entry, &bo->p_mm_list, head) {
		if (mm == entry->mm) {
			atomic_inc(&entry->refcount);
			return 0;
		} else if ((unsigned long)mm < (unsigned long)entry->mm) ;
	}

	n_entry = drm_ctl_alloc(sizeof(*n_entry), DRM_MEM_BUFOBJ);
	if (!n_entry) {
		DRM_ERROR("Allocation of process mm pointer entry failed\n");
		return -ENOMEM;
	}
	INIT_LIST_HEAD(&n_entry->head);
	n_entry->mm = mm;
	n_entry->locked = 0;
	atomic_set(&n_entry->refcount, 0);
	list_add_tail(&n_entry->head, &entry->head);

	return 0;
}

void drm_bo_delete_vma(struct drm_buffer_object * bo, struct vm_area_struct *vma)
{
	p_mm_entry_t *entry, *n;
	vma_entry_t *v_entry, *v_n;
	int found = 0;
	struct mm_struct *mm = vma->vm_mm;

	list_for_each_entry_safe(v_entry, v_n, &bo->vma_list, head) {
		if (v_entry->vma == vma) {
			found = 1;
			list_del(&v_entry->head);
			drm_ctl_free(v_entry, sizeof(*v_entry), DRM_MEM_BUFOBJ);
			break;
		}
	}
	BUG_ON(!found);

	list_for_each_entry_safe(entry, n, &bo->p_mm_list, head) {
		if (mm == entry->mm) {
			if (atomic_add_negative(-1, &entry->refcount)) {
				list_del(&entry->head);
				BUG_ON(entry->locked);
				drm_ctl_free(entry, sizeof(*entry), DRM_MEM_BUFOBJ);
			}
			return;
		}
	}
	BUG_ON(1);
}



int drm_bo_lock_kmm(struct drm_buffer_object * bo)
{
	p_mm_entry_t *entry;
	int lock_ok = 1;

	list_for_each_entry(entry, &bo->p_mm_list, head) {
		BUG_ON(entry->locked);
		if (!down_write_trylock(&entry->mm->mmap_sem)) {
			lock_ok = 0;
			break;
		}
		entry->locked = 1;
	}

	if (lock_ok)
		return 0;

	list_for_each_entry(entry, &bo->p_mm_list, head) {
		if (!entry->locked)
			break;
		up_write(&entry->mm->mmap_sem);
		entry->locked = 0;
	}

	/*
	 * Possible deadlock. Try again. Our callers should handle this
	 * and restart.
	 */

	return -EAGAIN;
}

void drm_bo_unlock_kmm(struct drm_buffer_object * bo)
{
	p_mm_entry_t *entry;

	list_for_each_entry(entry, &bo->p_mm_list, head) {
		BUG_ON(!entry->locked);
		up_write(&entry->mm->mmap_sem);
		entry->locked = 0;
	}
}

int drm_bo_remap_bound(struct drm_buffer_object *bo)
{
	vma_entry_t *v_entry;
	int ret = 0;

	if (drm_mem_reg_is_pci(bo->dev, &bo->mem)) {
		list_for_each_entry(v_entry, &bo->vma_list, head) {
			ret = drm_bo_map_bound(v_entry->vma);
			if (ret)
				break;
		}
	}

	return ret;
}

void drm_bo_finish_unmap(struct drm_buffer_object *bo)
{
	vma_entry_t *v_entry;

	list_for_each_entry(v_entry, &bo->vma_list, head) {
		v_entry->vma->vm_flags &= ~VM_PFNMAP;
	}
}

#endif

#ifdef DRM_IDR_COMPAT_FN
/* only called when idp->lock is held */
static void __free_layer(struct idr *idp, struct idr_layer *p)
{
	p->ary[0] = idp->id_free;
	idp->id_free = p;
	idp->id_free_cnt++;
}

static void free_layer(struct idr *idp, struct idr_layer *p)
{
	unsigned long flags;

	/*
	 * Depends on the return element being zeroed.
	 */
	spin_lock_irqsave(&idp->lock, flags);
	__free_layer(idp, p);
	spin_unlock_irqrestore(&idp->lock, flags);
}

/**
 * idr_for_each - iterate through all stored pointers
 * @idp: idr handle
 * @fn: function to be called for each pointer
 * @data: data passed back to callback function
 *
 * Iterate over the pointers registered with the given idr.  The
 * callback function will be called for each pointer currently
 * registered, passing the id, the pointer and the data pointer passed
 * to this function.  It is not safe to modify the idr tree while in
 * the callback, so functions such as idr_get_new and idr_remove are
 * not allowed.
 *
 * We check the return of @fn each time. If it returns anything other
 * than 0, we break out and return that value.
 *
* The caller must serialize idr_find() vs idr_get_new() and idr_remove().
 */
int idr_for_each(struct idr *idp,
		 int (*fn)(int id, void *p, void *data), void *data)
{
	int n, id, max, error = 0;
	struct idr_layer *p;
	struct idr_layer *pa[MAX_LEVEL];
	struct idr_layer **paa = &pa[0];

	n = idp->layers * IDR_BITS;
	p = idp->top;
	max = 1 << n;

	id = 0;
	while (id < max) {
		while (n > 0 && p) {
			n -= IDR_BITS;
			*paa++ = p;
			p = p->ary[(id >> n) & IDR_MASK];
		}

		if (p) {
			error = fn(id, (void *)p, data);
			if (error)
				break;
		}

		id += 1 << n;
		while (n < fls(id)) {
			n += IDR_BITS;
			p = *--paa;
		}
	}

	return error;
}
EXPORT_SYMBOL(idr_for_each);

/**
 * idr_remove_all - remove all ids from the given idr tree
 * @idp: idr handle
 *
 * idr_destroy() only frees up unused, cached idp_layers, but this
 * function will remove all id mappings and leave all idp_layers
 * unused.
 *
 * A typical clean-up sequence for objects stored in an idr tree, will
 * use idr_for_each() to free all objects, if necessay, then
 * idr_remove_all() to remove all ids, and idr_destroy() to free
 * up the cached idr_layers.
 */
void idr_remove_all(struct idr *idp)
{
       int n, id, max, error = 0;
       struct idr_layer *p;
       struct idr_layer *pa[MAX_LEVEL];
       struct idr_layer **paa = &pa[0];

       n = idp->layers * IDR_BITS;
       p = idp->top;
       max = 1 << n;

       id = 0;
       while (id < max && !error) {
               while (n > IDR_BITS && p) {
                       n -= IDR_BITS;
                       *paa++ = p;
                       p = p->ary[(id >> n) & IDR_MASK];
               }

               id += 1 << n;
               while (n < fls(id)) {
                       if (p) {
                               memset(p, 0, sizeof *p);
                               free_layer(idp, p);
                       }
                       n += IDR_BITS;
                       p = *--paa;
               }
       }
       idp->top = NULL;
       idp->layers = 0;
}
EXPORT_SYMBOL(idr_remove_all);

#endif /* DRM_IDR_COMPAT_FN */



#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
/**
 * idr_replace - replace pointer for given id
 * @idp: idr handle
 * @ptr: pointer you want associated with the id
 * @id: lookup key
 *
 * Replace the pointer registered with an id and return the old value.
 * A -ENOENT return indicates that @id was not found.
 * A -EINVAL return indicates that @id was not within valid constraints.
 *
 * The caller must serialize vs idr_find(), idr_get_new(), and idr_remove().
 */
void *idr_replace(struct idr *idp, void *ptr, int id)
{
	int n;
	struct idr_layer *p, *old_p;

	n = idp->layers * IDR_BITS;
	p = idp->top;

	id &= MAX_ID_MASK;

	if (id >= (1 << n))
		return ERR_PTR(-EINVAL);

	n -= IDR_BITS;
	while ((n > 0) && p) {
		p = p->ary[(id >> n) & IDR_MASK];
		n -= IDR_BITS;
	}

	n = id & IDR_MASK;
	if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
		return ERR_PTR(-ENOENT);

	old_p = p->ary[n];
	p->ary[n] = ptr;

	return (void *)old_p;
}
EXPORT_SYMBOL(idr_replace);
#endif

#if defined(DRM_KMAP_ATOMIC_PROT_PFN)
#define drm_kmap_get_fixmap_pte(vaddr)					\
	pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), (vaddr)), (vaddr))

void *kmap_atomic_prot_pfn(unsigned long pfn, enum km_type type,
			   pgprot_t protection)
{
	enum fixed_addresses idx;
	unsigned long vaddr;
	static pte_t *km_pte;
	static int initialized = 0;

	if (unlikely(!initialized)) {
		km_pte = drm_kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));
		initialized = 1;
	}

	pagefault_disable();
	idx = type + KM_TYPE_NR*smp_processor_id();
	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
	set_pte(km_pte-idx, pfn_pte(pfn, protection));

	return (void*) vaddr;
}

EXPORT_SYMBOL(kmap_atomic_prot_pfn);

#endif