/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include "drmP.h" #include "drm_crtc_helper.h" #include "radeon_drm.h" #include "radeon_drv.h" extern int atom_debug; void radeon_rmx_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; if (mode->hdisplay < radeon_encoder->panel_xres || mode->vdisplay < radeon_encoder->panel_yres) { radeon_encoder->flags |= RADEON_USE_RMX; if (radeon_is_avivo(dev_priv)) { adjusted_mode->hdisplay = radeon_encoder->panel_xres; adjusted_mode->vdisplay = radeon_encoder->panel_yres; adjusted_mode->htotal = radeon_encoder->panel_xres + radeon_encoder->hblank; adjusted_mode->hsync_start = radeon_encoder->panel_xres + radeon_encoder->hoverplus; adjusted_mode->hsync_end = adjusted_mode->hsync_start + radeon_encoder->hsync_width; adjusted_mode->vtotal = radeon_encoder->panel_yres + radeon_encoder->vblank; adjusted_mode->vsync_start = radeon_encoder->panel_yres + radeon_encoder->voverplus; adjusted_mode->vsync_end = adjusted_mode->vsync_start + radeon_encoder->vsync_width; /* update crtc values */ drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); /* adjust crtc values */ adjusted_mode->crtc_hdisplay = radeon_encoder->panel_xres; adjusted_mode->crtc_vdisplay = radeon_encoder->panel_yres; adjusted_mode->crtc_htotal = adjusted_mode->crtc_hdisplay + radeon_encoder->hblank; adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hdisplay + radeon_encoder->hoverplus; adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_start + radeon_encoder->hsync_width; adjusted_mode->crtc_vtotal = adjusted_mode->crtc_vdisplay + radeon_encoder->vblank; adjusted_mode->crtc_vsync_start = adjusted_mode->crtc_vdisplay + radeon_encoder->voverplus; adjusted_mode->crtc_vsync_end = adjusted_mode->crtc_vsync_start + radeon_encoder->vsync_width; } else { adjusted_mode->htotal = radeon_encoder->panel_xres + radeon_encoder->hblank; adjusted_mode->hsync_start = radeon_encoder->panel_xres + radeon_encoder->hoverplus; adjusted_mode->hsync_end = adjusted_mode->hsync_start + radeon_encoder->hsync_width; adjusted_mode->vtotal = radeon_encoder->panel_yres + radeon_encoder->vblank; adjusted_mode->vsync_start = radeon_encoder->panel_yres + radeon_encoder->voverplus; adjusted_mode->vsync_end = adjusted_mode->vsync_start + radeon_encoder->vsync_width; /* update crtc values */ drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); /* adjust crtc values */ adjusted_mode->crtc_htotal = adjusted_mode->crtc_hdisplay + radeon_encoder->hblank; adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hdisplay + radeon_encoder->hoverplus; adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_start + radeon_encoder->hsync_width; adjusted_mode->crtc_vtotal = adjusted_mode->crtc_vdisplay + radeon_encoder->vblank; adjusted_mode->crtc_vsync_start = adjusted_mode->crtc_vdisplay + radeon_encoder->voverplus; adjusted_mode->crtc_vsync_end = adjusted_mode->crtc_vsync_start + radeon_encoder->vsync_width; } } } static int atom_dac_find_atom_type(struct radeon_encoder *radeon_encoder, struct drm_connector *connector) { struct drm_device *dev = radeon_encoder->base.dev; struct drm_connector *connector_find; int atom_type = -1; if (!connector) { list_for_each_entry(connector_find, &dev->mode_config.connector_list, head) { if (connector_find->encoder == &radeon_encoder->base) connector = connector_find; } } if (connector) { /* look for the encoder in the connector list - check if we the DAC is enabled on a VGA or STV/CTV or CV connector */ /* work out the ATOM_DEVICE bits */ switch (connector->connector_type) { case CONNECTOR_VGA: case CONNECTOR_DVI_I: case CONNECTOR_DVI_A: if (radeon_encoder->atom_device & ATOM_DEVICE_CRT1_SUPPORT) atom_type = ATOM_DEVICE_CRT1_INDEX; else if (radeon_encoder->atom_device & ATOM_DEVICE_CRT2_SUPPORT) atom_type = ATOM_DEVICE_CRT2_INDEX; break; case CONNECTOR_STV: case CONNECTOR_CTV: if (radeon_encoder->atom_device & ATOM_DEVICE_TV1_SUPPORT) atom_type = ATOM_DEVICE_TV1_INDEX; break; case CONNECTOR_DIN: if (radeon_encoder->atom_device & ATOM_DEVICE_TV1_SUPPORT) atom_type = ATOM_DEVICE_TV1_INDEX; if (radeon_encoder->atom_device & ATOM_DEVICE_CV_SUPPORT) atom_type = ATOM_DEVICE_CV_INDEX; break; } } return atom_type; } /* LVTMA encoder for LVDS usage */ static void atombios_display_device_control(struct drm_encoder *encoder, int index, uint8_t state) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; DISPLAY_DEVICE_OUTPUT_CONTROL_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucAction = state; atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_scaler_setup(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc); ENABLE_SCALER_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, EnableScaler); /* pre-avivo chips only have 1 scaler */ if (!radeon_is_avivo(dev_priv) && radeon_crtc->crtc_id) return; memset(&args, 0, sizeof(args)); args.ucScaler = radeon_crtc->crtc_id; if (radeon_encoder->flags & RADEON_USE_RMX) { if (radeon_encoder->rmx_type == RMX_FULL) args.ucEnable = ATOM_SCALER_EXPANSION; else if (radeon_encoder->rmx_type == RMX_CENTER) args.ucEnable = ATOM_SCALER_CENTER; } else { if (radeon_is_avivo(dev_priv)) args.ucEnable = ATOM_SCALER_DISABLE; else args.ucEnable = ATOM_SCALER_CENTER; } atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); } void atombios_set_crtc_source(struct drm_encoder *encoder, int source) { int index = GetIndexIntoMasterTable(COMMAND, SelectCRTC_Source); struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc); struct drm_radeon_private *dev_priv = encoder->dev->dev_private; uint8_t frev, crev; SELECT_CRTC_SOURCE_PS_ALLOCATION crtc_src_param; SELECT_CRTC_SOURCE_PARAMETERS_V2 crtc_src_param2; uint32_t *param = NULL; atom_parse_cmd_header(dev_priv->mode_info.atom_context, index, &frev, &crev); switch (frev) { case 1: { switch (crev) { case 0: case 1: default: memset(&crtc_src_param, 0, sizeof(crtc_src_param)); crtc_src_param.ucCRTC = radeon_crtc->crtc_id; crtc_src_param.ucDevice = source; param = (uint32_t *)&crtc_src_param; break; case 2: memset(&crtc_src_param2, 0, sizeof(crtc_src_param2)); crtc_src_param2.ucCRTC = radeon_crtc->crtc_id; crtc_src_param2.ucEncoderID = source; switch (source) { case ATOM_DEVICE_CRT1_INDEX: case ATOM_DEVICE_CRT2_INDEX: crtc_src_param2.ucEncodeMode = ATOM_ENCODER_MODE_CRT; break; case ATOM_DEVICE_DFP1_INDEX: case ATOM_DEVICE_DFP2_INDEX: case ATOM_DEVICE_DFP3_INDEX: crtc_src_param2.ucEncodeMode = ATOM_ENCODER_MODE_DVI; // TODO ENCODER MODE break; case ATOM_DEVICE_LCD1_INDEX: crtc_src_param2.ucEncodeMode = ATOM_ENCODER_MODE_LVDS; break; case ATOM_DEVICE_TV1_INDEX: crtc_src_param2.ucEncodeMode = ATOM_ENCODER_MODE_TV; break; case ATOM_DEVICE_CV_INDEX: crtc_src_param2.ucEncodeMode = ATOM_ENCODER_MODE_CV; break; } param = (uint32_t *)&crtc_src_param2; break; } } break; default: return; } atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)param); } static void atombios_output_digital_mode_set(struct drm_encoder *encoder, int device, struct drm_display_mode *mode) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct drm_radeon_private *dev_priv = encoder->dev->dev_private; uint8_t frev, crev; int index; LVDS_ENCODER_CONTROL_PS_ALLOCATION args; LVDS_ENCODER_CONTROL_PS_ALLOCATION_V2 args2; uint32_t *param = NULL; switch (device) { case ATOM_DEVICE_DFP1_INDEX: index = GetIndexIntoMasterTable(COMMAND, TMDS1EncoderControl); break; case ATOM_DEVICE_LCD1_INDEX: index = GetIndexIntoMasterTable(COMMAND, LVDSEncoderControl); break; case ATOM_DEVICE_DFP3_INDEX: index = GetIndexIntoMasterTable(COMMAND, TMDS2EncoderControl); break; default: return; } atom_parse_cmd_header(dev_priv->mode_info.atom_context, index, &frev, &crev); switch (frev) { case 0: case 1: switch (crev) { case 0: case 1: memset(&args, 0, sizeof(args)); args.ucAction = PANEL_ENCODER_ACTION_ENABLE; // TODO HDMI //if (radeon_encoder->type == OUTPUT_HDMI) //disp_data.ucMisc |= PANEL_ENCODER_MISC_HDMI_TYPE; args.usPixelClock = cpu_to_le16(mode->clock / 10); if (device == ATOM_DEVICE_LCD1_INDEX) { if (radeon_encoder->lvds_misc & (1 << 0)) args.ucMisc |= PANEL_ENCODER_MISC_DUAL; if (radeon_encoder->lvds_misc & (1 << 1)) args.ucMisc |= (1 << 1); } else { if (mode->clock > 165000) args.ucMisc |= PANEL_ENCODER_MISC_DUAL; // TODO 6-bit DAC args.ucMisc |= (1 << 1); } param = (uint32_t *)&args; break; case 2: case 3: memset(&args2, 0, sizeof(args2)); args2.ucAction = PANEL_ENCODER_ACTION_ENABLE; if (crev == 3) { // TODO coherent mode //if (encoder->coherent_mode) //args2.ucMisc |= PANEL_ENCODER_MISC_COHERENT; } // TODO HDMI //if (radeon_encoder->type == OUTPUT_HDMI) //args2.ucMisc |= PANEL_ENCODER_MISC_HDMI_TYPE; if (device == ATOM_DEVICE_LCD1_INDEX) { if (radeon_encoder->lvds_misc & (1 << 0)) args2.ucMisc |= PANEL_ENCODER_MISC_DUAL; if (radeon_encoder->lvds_misc & (1 << 5)) { args2.ucSpatial = PANEL_ENCODER_SPATIAL_DITHER_EN; if (radeon_encoder->lvds_misc & (1 << 1)) args2.ucSpatial |= PANEL_ENCODER_SPATIAL_DITHER_DEPTH; } if (radeon_encoder->lvds_misc & (1 << 6)) { args2.ucTemporal = PANEL_ENCODER_TEMPORAL_DITHER_EN; if (radeon_encoder->lvds_misc & (1 << 1)) args2.ucTemporal |= PANEL_ENCODER_TEMPORAL_DITHER_DEPTH; } } else { if (mode->clock > 165000) args2.ucMisc |= PANEL_ENCODER_MISC_DUAL; } param = (uint32_t *)&args2; break; } break; } atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)param); } static void radeon_lvtma_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { atombios_scaler_setup(encoder, mode); atombios_set_crtc_source(encoder, ATOM_DEVICE_LCD1_INDEX); atombios_output_digital_mode_set(encoder, ATOM_DEVICE_LCD1_INDEX, adjusted_mode); } static void radeon_lvtma_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, LCD1OutputControl); uint32_t bios_2_scratch, bios_3_scratch; int crtc_id = 0; if (encoder->crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc); crtc_id = radeon_crtc->crtc_id; } if (dev_priv->chip_family >= CHIP_R600) { bios_2_scratch = RADEON_READ(R600_BIOS_2_SCRATCH); bios_3_scratch = RADEON_READ(R600_BIOS_3_SCRATCH); } else { bios_2_scratch = RADEON_READ(RADEON_BIOS_2_SCRATCH); bios_3_scratch = RADEON_READ(RADEON_BIOS_3_SCRATCH); } bios_2_scratch &= ~ATOM_S3_LCD1_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 17); switch(mode) { case DRM_MODE_DPMS_ON: atombios_display_device_control(encoder, index, ATOM_ENABLE); bios_2_scratch &= ~ATOM_S2_LCD1_DPMS_STATE; bios_3_scratch |= ATOM_S3_LCD1_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: atombios_display_device_control(encoder, index, ATOM_DISABLE); bios_2_scratch |= ATOM_S2_LCD1_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_LCD1_ACTIVE; break; } if (dev_priv->chip_family >= CHIP_R600) { RADEON_WRITE(R600_BIOS_2_SCRATCH, bios_2_scratch); RADEON_WRITE(R600_BIOS_3_SCRATCH, bios_3_scratch); } else { RADEON_WRITE(RADEON_BIOS_2_SCRATCH, bios_2_scratch); RADEON_WRITE(RADEON_BIOS_3_SCRATCH, bios_3_scratch); } } static bool radeon_lvtma_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); radeon_encoder->flags &= ~RADEON_USE_RMX; if (radeon_encoder->rmx_type != RMX_OFF) radeon_rmx_mode_fixup(encoder, mode, adjusted_mode); return true; } static void radeon_lvtma_prepare(struct drm_encoder *encoder) { radeon_atom_output_lock(encoder, true); radeon_lvtma_dpms(encoder, DRM_MODE_DPMS_OFF); } static void radeon_lvtma_commit(struct drm_encoder *encoder) { radeon_lvtma_dpms(encoder, DRM_MODE_DPMS_ON); radeon_atom_output_lock(encoder, false); } static const struct drm_encoder_helper_funcs radeon_atom_lvtma_helper_funcs = { .dpms = radeon_lvtma_dpms, .mode_fixup = radeon_lvtma_mode_fixup, .prepare = radeon_lvtma_prepare, .mode_set = radeon_lvtma_mode_set, .commit = radeon_lvtma_commit, }; void radeon_enc_destroy(struct drm_encoder *encoder) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); drm_encoder_cleanup(encoder); kfree(radeon_encoder); } static const struct drm_encoder_funcs radeon_atom_lvtma_enc_funcs = { .destroy = radeon_enc_destroy, }; struct drm_encoder *radeon_encoder_lvtma_add(struct drm_device *dev, int bios_index) { struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_mode_info *mode_info = &dev_priv->mode_info; struct radeon_encoder *radeon_encoder; struct drm_encoder *encoder; radeon_encoder = kzalloc(sizeof(struct radeon_encoder), GFP_KERNEL); if (!radeon_encoder) { return NULL; } encoder = &radeon_encoder->base; /* Set LVTMA to only use crtc 0 */ encoder->possible_crtcs = 0x1; encoder->possible_clones = 0; drm_encoder_init(dev, encoder, &radeon_atom_lvtma_enc_funcs, DRM_MODE_ENCODER_LVDS); drm_encoder_helper_add(encoder, &radeon_atom_lvtma_helper_funcs); radeon_encoder->atom_device = mode_info->bios_connector[bios_index].devices; /* TODO get the LVDS info from the BIOS for panel size etc. */ /* get the lvds info from the bios */ radeon_atombios_get_lvds_info(radeon_encoder); /* LVDS gets default RMX full scaling */ radeon_encoder->rmx_type = RMX_FULL; return encoder; } static void radeon_atom_dac_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_crtc *radeon_crtc; int atom_type = -1; int index; uint32_t bios_2_scratch, bios_3_scratch; int crtc_id = 0; if (encoder->crtc) { radeon_crtc = to_radeon_crtc(encoder->crtc); crtc_id = radeon_crtc->crtc_id; } atom_type = atom_dac_find_atom_type(radeon_encoder, NULL); if (atom_type == -1) return; if (dev_priv->chip_family >= CHIP_R600) { bios_2_scratch = RADEON_READ(R600_BIOS_2_SCRATCH); bios_3_scratch = RADEON_READ(R600_BIOS_3_SCRATCH); } else { bios_2_scratch = RADEON_READ(RADEON_BIOS_2_SCRATCH); bios_3_scratch = RADEON_READ(RADEON_BIOS_3_SCRATCH); } switch(atom_type) { case ATOM_DEVICE_CRT1_INDEX: index = GetIndexIntoMasterTable(COMMAND, DAC1OutputControl); bios_2_scratch &= ~ATOM_S3_CRT1_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 16); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_CRT1_DPMS_STATE; bios_3_scratch |= ATOM_S3_CRT1_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_CRT1_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_CRT1_ACTIVE; break; } break; case ATOM_DEVICE_CRT2_INDEX: index = GetIndexIntoMasterTable(COMMAND, DAC2OutputControl); bios_2_scratch &= ~ATOM_S3_CRT2_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 20); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_CRT2_DPMS_STATE; bios_3_scratch |= ATOM_S3_CRT2_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_CRT2_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_CRT2_ACTIVE; break; } break; case ATOM_DEVICE_TV1_INDEX: index = GetIndexIntoMasterTable(COMMAND, TV1OutputControl); bios_3_scratch &= ~ATOM_S3_TV1_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 18); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_TV1_DPMS_STATE; bios_3_scratch |= ATOM_S3_TV1_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_TV1_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_TV1_ACTIVE; break; } break; case ATOM_DEVICE_CV_INDEX: index = GetIndexIntoMasterTable(COMMAND, CV1OutputControl); bios_2_scratch &= ~ATOM_S3_CV_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 24); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_CV_DPMS_STATE; bios_3_scratch |= ATOM_S3_CV_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_CV_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_CV_ACTIVE; break; } break; default: return; } switch(mode) { case DRM_MODE_DPMS_ON: atombios_display_device_control(encoder, index, ATOM_ENABLE); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: atombios_display_device_control(encoder, index, ATOM_DISABLE); break; } if (dev_priv->chip_family >= CHIP_R600) { RADEON_WRITE(R600_BIOS_2_SCRATCH, bios_2_scratch); RADEON_WRITE(R600_BIOS_3_SCRATCH, bios_3_scratch); } else { RADEON_WRITE(RADEON_BIOS_2_SCRATCH, bios_2_scratch); RADEON_WRITE(RADEON_BIOS_3_SCRATCH, bios_3_scratch); } } static bool radeon_atom_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* hw bug */ if ((mode->flags & DRM_MODE_FLAG_INTERLACE) && (mode->crtc_vsync_start < (mode->crtc_vdisplay + 2))) adjusted_mode->crtc_vsync_start = adjusted_mode->crtc_vdisplay + 2; return true; } static void radeon_atom_dac_prepare(struct drm_encoder *encoder) { radeon_atom_output_lock(encoder, true); radeon_atom_dac_dpms(encoder, DRM_MODE_DPMS_OFF); } static void radeon_atom_dac_commit(struct drm_encoder *encoder) { radeon_atom_dac_dpms(encoder, DRM_MODE_DPMS_ON); radeon_atom_output_lock(encoder, false); } static int atombios_dac_setup(struct drm_encoder *encoder, struct drm_display_mode *mode, int atom_type) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); DAC_ENCODER_CONTROL_PS_ALLOCATION args; int id = (radeon_encoder->type.dac == DAC_TVDAC); int index; memset(&args, 0, sizeof(args)); if (id == 0) index = GetIndexIntoMasterTable(COMMAND, DAC1EncoderControl); else index = GetIndexIntoMasterTable(COMMAND, DAC2EncoderControl); args.ucAction = 1; args.usPixelClock = cpu_to_le16(mode->clock / 10); if ((atom_type == ATOM_DEVICE_CRT1_INDEX) || (atom_type == ATOM_DEVICE_CRT2_INDEX)) args.ucDacStandard = id ? ATOM_DAC2_PS2 : ATOM_DAC1_PS2; else if (atom_type == ATOM_DEVICE_CV_INDEX) args.ucDacStandard = id ? ATOM_DAC2_CV : ATOM_DAC1_CV; else if (atom_type == ATOM_DEVICE_TV1_INDEX) args.ucDacStandard = id ? ATOM_DAC2_NTSC : ATOM_DAC1_NTSC; /* TODO PAL */ atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); return 0; } static int atombios_tv1_setup(struct drm_encoder *encoder, struct drm_display_mode *mode, int atom_type) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; TV_ENCODER_CONTROL_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, TVEncoderControl); memset(&args, 0, sizeof(args)); args.sTVEncoder.ucAction = 1; if (atom_type == ATOM_DEVICE_CV_INDEX) args.sTVEncoder.ucTvStandard = ATOM_TV_CV; else { // TODO PAL args.sTVEncoder.ucTvStandard = ATOM_TV_NTSC; } args.sTVEncoder.usPixelClock = cpu_to_le16(mode->clock / 10); atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); return 0; } static void radeon_atom_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); int atom_type = -1; atom_type = atom_dac_find_atom_type(radeon_encoder, NULL); if (atom_type == -1) return; atombios_scaler_setup(encoder, mode); atombios_set_crtc_source(encoder, atom_type); atombios_dac_setup(encoder, adjusted_mode, atom_type); if ((atom_type == ATOM_DEVICE_TV1_INDEX) || (atom_type == ATOM_DEVICE_CV_INDEX)) atombios_tv1_setup(encoder, adjusted_mode, atom_type); } static bool atom_dac_load_detect(struct drm_encoder *encoder, int atom_devices) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; DAC_LOAD_DETECTION_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DAC_LoadDetection); memset(&args, 0, sizeof(args)); args.sDacload.ucMisc = 0; args.sDacload.ucDacType = (radeon_encoder->type.dac == DAC_PRIMARY) ? ATOM_DAC_A : ATOM_DAC_B; if (atom_devices & ATOM_DEVICE_CRT1_SUPPORT) args.sDacload.usDeviceID = cpu_to_le16(ATOM_DEVICE_CRT1_SUPPORT); else if (atom_devices & ATOM_DEVICE_CRT2_SUPPORT) args.sDacload.usDeviceID = cpu_to_le16(ATOM_DEVICE_CRT2_SUPPORT); else if (atom_devices & ATOM_DEVICE_CV_SUPPORT) { args.sDacload.usDeviceID = cpu_to_le16(ATOM_DEVICE_CV_SUPPORT); if (radeon_is_dce3(dev_priv)) args.sDacload.ucMisc = 1; } else if (atom_devices & ATOM_DEVICE_TV1_SUPPORT) { args.sDacload.usDeviceID = cpu_to_le16(ATOM_DEVICE_TV1_SUPPORT); if (radeon_is_dce3(dev_priv)) args.sDacload.ucMisc = 1; } else return false; DRM_DEBUG("writing %x %x\n", args.sDacload.usDeviceID, args.sDacload.ucDacType); atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); return true; } static enum drm_connector_status radeon_atom_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); int atom_type = -1; uint32_t bios_0_scratch; atom_type = atom_dac_find_atom_type(radeon_encoder, connector); if (atom_type == -1) { DRM_DEBUG("exit after find \n"); return connector_status_unknown; } if(!atom_dac_load_detect(encoder, (1 << atom_type))) { DRM_DEBUG("detect returned false \n"); return connector_status_unknown; } if (dev_priv->chip_family >= CHIP_R600) bios_0_scratch = RADEON_READ(R600_BIOS_0_SCRATCH); else bios_0_scratch = RADEON_READ(RADEON_BIOS_0_SCRATCH); DRM_DEBUG("Bios 0 scratch %x\n", bios_0_scratch); if (radeon_encoder->atom_device & ATOM_DEVICE_CRT1_SUPPORT) { if (bios_0_scratch & ATOM_S0_CRT1_MASK) return connector_status_connected; } else if (radeon_encoder->atom_device & ATOM_DEVICE_CRT2_SUPPORT) { if (bios_0_scratch & ATOM_S0_CRT2_MASK) return connector_status_connected; } else if (radeon_encoder->atom_device & ATOM_DEVICE_CV_SUPPORT) { if (bios_0_scratch & (ATOM_S0_CV_MASK|ATOM_S0_CV_MASK_A)) return connector_status_connected; } else if (radeon_encoder->atom_device & ATOM_DEVICE_TV1_SUPPORT) { if (bios_0_scratch & (ATOM_S0_TV1_COMPOSITE | ATOM_S0_TV1_COMPOSITE_A)) return connector_status_connected; // CTV else if (bios_0_scratch & (ATOM_S0_TV1_SVIDEO | ATOM_S0_TV1_SVIDEO_A)) return connector_status_connected; // STV } return connector_status_disconnected; } static const struct drm_encoder_helper_funcs radeon_atom_dac_helper_funcs = { .dpms = radeon_atom_dac_dpms, .mode_fixup = radeon_atom_dac_mode_fixup, .prepare = radeon_atom_dac_prepare, .mode_set = radeon_atom_dac_mode_set, .commit = radeon_atom_dac_commit, .detect = radeon_atom_dac_detect, }; static const struct drm_encoder_funcs radeon_atom_dac_enc_funcs = { . destroy = radeon_enc_destroy, }; void atombios_ext_tmds_setup(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; ENABLE_EXTERNAL_TMDS_ENCODER_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DVOEncoderControl); memset(&args, 0, sizeof(args)); args.sXTmdsEncoder.ucEnable = PANEL_ENCODER_ACTION_ENABLE; if (mode->clock > 165000) args.sXTmdsEncoder.ucMisc = PANEL_ENCODER_MISC_DUAL; // TODO 6-bit DAC args.sXTmdsEncoder.ucMisc |= (1 << 1); atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_dig1_setup(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; DIG_ENCODER_CONTROL_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DIG1EncoderControl); memset(&args, 0, sizeof(args)); args.ucAction = ATOM_ENABLE; args.usPixelClock = mode->clock / 10; args.ucConfig = ATOM_ENCODER_CONFIG_TRANSMITTER1; // TODO coherent mode // if (encoder->coherent_mode) // args.ucConfig |= ATOM_TRANSMITTER_CONFIG_COHERENT; if (mode->clock > 165000) { args.ucConfig |= ATOM_ENCODER_CONFIG_LINKA_B; args.ucLaneNum = 8; } else { args.ucConfig |= ATOM_ENCODER_CONFIG_LINKA; args.ucLaneNum = 4; } // TODO Encoder MODE atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_ddia_setup(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; DVO_ENCODER_CONTROL_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DVOEncoderControl); memset(&args, 0, sizeof(args)); args.sDVOEncoder.ucAction = PANEL_ENCODER_ACTION_ENABLE; args.sDVOEncoder.usPixelClock = cpu_to_le16(mode->clock / 10); if (mode->clock > 165000) args.sDVOEncoder.usDevAttr.sDigAttrib.ucAttribute = PANEL_ENCODER_MISC_DUAL; atom_execute_table(dev_priv->mode_info.atom_context, index, (uint32_t *)&args); } struct drm_encoder *radeon_encoder_atom_dac_add(struct drm_device *dev, int bios_index, int dac_type, int with_tv) { struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_mode_info *mode_info = &dev_priv->mode_info; struct radeon_encoder *radeon_encoder = NULL; struct drm_encoder *encoder; int type = with_tv ? DRM_MODE_ENCODER_TVDAC : DRM_MODE_ENCODER_DAC; int found = 0; int digital_enc_mask = ~(ATOM_DEVICE_DFP1_SUPPORT | ATOM_DEVICE_DFP2_SUPPORT | ATOM_DEVICE_DFP3_SUPPORT | ATOM_DEVICE_LCD1_SUPPORT); /* we may already have added this encoder */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DAC || encoder->encoder_type != DRM_MODE_ENCODER_TVDAC) continue; radeon_encoder = to_radeon_encoder(encoder); if (radeon_encoder->type.dac == dac_type) { found = 1; break; } } if (found) { /* upgrade to a TV controlling DAC */ if (type == DRM_MODE_ENCODER_TVDAC) encoder->encoder_type = type; radeon_encoder->atom_device |= mode_info->bios_connector[bios_index].devices; radeon_encoder->atom_device &= digital_enc_mask; return encoder; } radeon_encoder = kzalloc(sizeof(struct radeon_encoder), GFP_KERNEL); if (!radeon_encoder) { return NULL; } encoder = &radeon_encoder->base; encoder->possible_crtcs = 0x3; encoder->possible_clones = 0; drm_encoder_init(dev, encoder, &radeon_atom_dac_enc_funcs, type); drm_encoder_helper_add(encoder, &radeon_atom_dac_helper_funcs); radeon_encoder->type.dac = dac_type; radeon_encoder->atom_device = mode_info->bios_connector[bios_index].devices; /* mask off any digital encoders */ radeon_encoder->atom_device &= digital_enc_mask; return encoder; } static void radeon_atom_tmds_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_crtc *radeon_crtc = NULL; int crtc_id = 0; int atom_type = -1; int index = -1; uint32_t bios_2_scratch, bios_3_scratch; if (encoder->crtc) { radeon_crtc = to_radeon_crtc(encoder->crtc); crtc_id = radeon_crtc->crtc_id; } else if (mode == DRM_MODE_DPMS_ON) return; if (radeon_encoder->atom_device & ATOM_DEVICE_DFP1_SUPPORT) atom_type = ATOM_DEVICE_DFP1_INDEX; if (radeon_encoder->atom_device & ATOM_DEVICE_DFP2_SUPPORT) atom_type = ATOM_DEVICE_DFP2_INDEX; if (radeon_encoder->atom_device & ATOM_DEVICE_DFP3_SUPPORT) atom_type = ATOM_DEVICE_DFP3_INDEX; if (atom_type == -1) return; if (dev_priv->chip_family >= CHIP_R600) { bios_2_scratch = RADEON_READ(R600_BIOS_2_SCRATCH); bios_3_scratch = RADEON_READ(R600_BIOS_3_SCRATCH); } else { bios_2_scratch = RADEON_READ(RADEON_BIOS_2_SCRATCH); bios_3_scratch = RADEON_READ(RADEON_BIOS_3_SCRATCH); } switch(atom_type) { case ATOM_DEVICE_DFP1_INDEX: index = GetIndexIntoMasterTable(COMMAND, TMDSAOutputControl); bios_2_scratch &= ~ATOM_S3_DFP1_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 19); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_DFP1_DPMS_STATE; bios_3_scratch |= ATOM_S3_DFP1_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_DFP1_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_DFP1_ACTIVE; break; } break; case ATOM_DEVICE_DFP2_INDEX: index = GetIndexIntoMasterTable(COMMAND, DVOOutputControl); bios_2_scratch &= ~ATOM_S3_DFP2_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 23); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_DFP2_DPMS_STATE; bios_3_scratch |= ATOM_S3_DFP2_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_DFP2_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_DFP2_ACTIVE; break; } break; case ATOM_DEVICE_DFP3_INDEX: index = GetIndexIntoMasterTable(COMMAND, LVTMAOutputControl); bios_2_scratch &= ~ATOM_S3_DFP3_CRTC_ACTIVE; bios_3_scratch |= (crtc_id << 25); switch(mode) { case DRM_MODE_DPMS_ON: bios_2_scratch &= ~ATOM_S2_DFP3_DPMS_STATE; bios_3_scratch |= ATOM_S3_DFP3_ACTIVE; break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: bios_2_scratch |= ATOM_S2_DFP3_DPMS_STATE; bios_3_scratch &= ~ATOM_S3_DFP3_ACTIVE; break; } break; } if (index == -1) return; switch(mode) { case DRM_MODE_DPMS_ON: atombios_display_device_control(encoder, index, ATOM_ENABLE); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: atombios_display_device_control(encoder, index, ATOM_DISABLE); break; } if (dev_priv->chip_family >= CHIP_R600) { RADEON_WRITE(R600_BIOS_2_SCRATCH, bios_2_scratch); RADEON_WRITE(R600_BIOS_3_SCRATCH, bios_3_scratch); } else { RADEON_WRITE(RADEON_BIOS_2_SCRATCH, bios_2_scratch); RADEON_WRITE(RADEON_BIOS_3_SCRATCH, bios_3_scratch); } } static bool radeon_atom_tmds_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* hw bug */ if ((mode->flags & DRM_MODE_FLAG_INTERLACE) && (mode->crtc_vsync_start < (mode->crtc_vdisplay + 2))) adjusted_mode->crtc_vsync_start = adjusted_mode->crtc_vdisplay + 2; return true; } static void radeon_atom_tmds_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); int atom_type; if (radeon_encoder->atom_device & ATOM_DEVICE_DFP1_SUPPORT) atom_type = ATOM_DEVICE_DFP1_INDEX; if (radeon_encoder->atom_device & ATOM_DEVICE_DFP2_SUPPORT) atom_type = ATOM_DEVICE_DFP2_INDEX; if (radeon_encoder->atom_device & ATOM_DEVICE_DFP3_SUPPORT) atom_type = ATOM_DEVICE_DFP3_INDEX; atombios_scaler_setup(encoder, mode); atombios_set_crtc_source(encoder, atom_type); if (atom_type == ATOM_DEVICE_DFP1_INDEX) atombios_output_digital_mode_set(encoder, ATOM_DEVICE_DFP1_INDEX, adjusted_mode); if (atom_type == ATOM_DEVICE_DFP2_INDEX) { if ((dev_priv->chip_family == CHIP_RS600) || (dev_priv->chip_family == CHIP_RS690) || (dev_priv->chip_family == CHIP_RS740)) atombios_ddia_setup(encoder, adjusted_mode); else atombios_ext_tmds_setup(encoder, adjusted_mode); } if (atom_type == ATOM_DEVICE_DFP3_INDEX) atombios_output_digital_mode_set(encoder, ATOM_DEVICE_DFP3_INDEX, adjusted_mode); } static void radeon_atom_tmds_prepare(struct drm_encoder *encoder) { radeon_atom_output_lock(encoder, true); radeon_atom_tmds_dpms(encoder, DRM_MODE_DPMS_OFF); } static void radeon_atom_tmds_commit(struct drm_encoder *encoder) { radeon_atom_tmds_dpms(encoder, DRM_MODE_DPMS_ON); radeon_atom_output_lock(encoder, false); } static const struct drm_encoder_helper_funcs radeon_atom_tmds_helper_funcs = { .dpms = radeon_atom_tmds_dpms, .mode_fixup = radeon_atom_tmds_mode_fixup, .prepare = radeon_atom_tmds_prepare, .mode_set = radeon_atom_tmds_mode_set, .commit = radeon_atom_tmds_commit, /* no detect for TMDS */ }; static const struct drm_encoder_funcs radeon_atom_tmds_enc_funcs = { . destroy = radeon_enc_destroy, }; struct drm_encoder *radeon_encoder_atom_tmds_add(struct drm_device *dev, int bios_index, int tmds_type) { struct drm_radeon_private *dev_priv = dev->dev_private; struct radeon_mode_info *mode_info = &dev_priv->mode_info; struct radeon_encoder *radeon_encoder = NULL; struct drm_encoder *encoder; int analog_enc_mask = ~(ATOM_DEVICE_CRT1_SUPPORT | ATOM_DEVICE_CRT2_SUPPORT); radeon_encoder = kzalloc(sizeof(struct radeon_encoder), GFP_KERNEL); if (!radeon_encoder) { return NULL; } encoder = &radeon_encoder->base; encoder->possible_crtcs = 0x3; encoder->possible_clones = 0; drm_encoder_init(dev, encoder, &radeon_atom_tmds_enc_funcs, DRM_MODE_ENCODER_TMDS); drm_encoder_helper_add(encoder, &radeon_atom_tmds_helper_funcs); radeon_encoder->atom_device = mode_info->bios_connector[bios_index].devices; /* mask off any analog encoders */ radeon_encoder->atom_device &= analog_enc_mask; return encoder; }