/* * Copyright (c) 2007 Intel Corporation * Jesse Barnes * * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from * FB layer. * Copyright (C) 2006 Dennis Munsie */ #include #include #include "drmP.h" #include "drm_edid.h" /* Valid EDID header has these bytes */ static u8 edid_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; /** * edid_valid - sanity check EDID data * @edid: EDID data * * Sanity check the EDID block by looking at the header, the version number * and the checksum. Return 0 if the EDID doesn't check out, or 1 if it's * valid. */ static bool edid_valid(struct edid *edid) { int i; u8 csum = 0; u8 *raw_edid = (u8 *)edid; if (memcmp(edid->header, edid_header, sizeof(edid_header))) goto bad; if (edid->version != 1) goto bad; if (edid->revision <= 0 || edid->revision > 3) goto bad; for (i = 0; i < EDID_LENGTH; i++) csum += raw_edid[i]; if (csum) goto bad; return 1; bad: return 0; } /** * drm_mode_std - convert standard mode info (width, height, refresh) into mode * @t: standard timing params * * Take the standard timing params (in this case width, aspect, and refresh) * and convert them into a real mode using CVT. * * Punts for now, but should eventually use the FB layer's CVT based mode * generation code. */ struct drm_display_mode *drm_mode_std(struct drm_device *dev, struct std_timing *t) { // struct fb_videomode mode; // fb_find_mode_cvt(&mode, 0, 0); /* JJJ: convert to drm_display_mode */ struct drm_display_mode *mode; int hsize = t->hsize * 8 + 248, vsize; mode = drm_mode_create(dev); if (!mode) return NULL; if (t->aspect_ratio == 0) vsize = (hsize * 10) / 16; else if (t->aspect_ratio == 1) vsize = (hsize * 3) / 4; else if (t->aspect_ratio == 2) vsize = (hsize * 4) / 5; else vsize = (hsize * 9) / 16; drm_mode_set_name(mode); return mode; } /** * drm_mode_detailed - create a new mode from an EDID detailed timing section * @timing: EDID detailed timing info * @preferred: is this a preferred mode? * * An EDID detailed timing block contains enough info for us to create and * return a new struct drm_display_mode. The @preferred flag will be set * if this is the display's preferred timing, and we'll use it to indicate * to the other layers that this mode is desired. */ struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, struct detailed_timing *timing) { struct drm_display_mode *mode; struct detailed_pixel_timing *pt = &timing->data.pixel_data; if (pt->stereo) { printk(KERN_WARNING "stereo mode not supported\n"); return NULL; } if (!pt->separate_sync) { printk(KERN_WARNING "integrated sync not supported\n"); return NULL; } mode = drm_mode_create(dev); if (!mode) return NULL; mode->type = DRM_MODE_TYPE_DRIVER; mode->clock = timing->pixel_clock * 10; mode->hdisplay = (pt->hactive_hi << 8) | pt->hactive_lo; mode->hsync_start = mode->hdisplay + ((pt->hsync_offset_hi << 8) | pt->hsync_offset_lo); mode->hsync_end = mode->hsync_start + ((pt->hsync_pulse_width_hi << 8) | pt->hsync_pulse_width_lo); mode->htotal = mode->hdisplay + ((pt->hblank_hi << 8) | pt->hblank_lo); mode->vdisplay = (pt->vactive_hi << 8) | pt->vactive_lo; mode->vsync_start = mode->vdisplay + ((pt->vsync_offset_hi << 8) | pt->vsync_offset_lo); mode->vsync_end = mode->vsync_start + ((pt->vsync_pulse_width_hi << 8) | pt->vsync_pulse_width_lo); mode->vtotal = mode->vdisplay + ((pt->vblank_hi << 8) | pt->vblank_lo); drm_mode_set_name(mode); if (pt->interlaced) mode->flags |= V_INTERLACE; mode->flags |= pt->hsync_positive ? V_PHSYNC : V_NHSYNC; mode->flags |= pt->vsync_positive ? V_PVSYNC : V_NVSYNC; return mode; } /* * Detailed mode info for the EDID "established modes" data to use. */ static struct drm_display_mode edid_est_modes[] = { { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, V_PHSYNC | V_PVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, V_PHSYNC | V_PVSYNC) }, /* 800x600@56Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, V_NHSYNC | V_NVSYNC) }, /* 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, V_NHSYNC | V_NVSYNC) }, /* 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 768, 864, 0, 480, 483, 486, 525, 0, V_NHSYNC | V_NVSYNC) }, /* 640x480@67Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, V_NHSYNC | V_NVSYNC) }, /* 640x480@60Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 846, 900, 0, 400, 421, 423, 449, 0, V_NHSYNC | V_NVSYNC) }, /* 720x400@88Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 846, 900, 0, 400, 412, 414, 449, 0, V_NHSYNC | V_PVSYNC) }, /* 720x400@70Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, V_PHSYNC | V_PVSYNC) }, /* 1280x1024@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, V_PHSYNC | V_PVSYNC) }, /* 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, V_NHSYNC | V_NVSYNC) }, /* 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, V_NHSYNC | V_NVSYNC) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 1208, 1264, 0, 768, 768, 776, 817, 0, V_PHSYNC | V_PVSYNC | V_INTERLACE) }, /* 1024x768@43Hz */ { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 928, 1152, 0, 624, 625, 628, 667, 0, V_NHSYNC | V_NVSYNC) }, /* 832x624@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, V_PHSYNC | V_PVSYNC) }, /* 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, V_PHSYNC | V_PVSYNC) }, /* 800x600@72Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, V_PHSYNC | V_PVSYNC) }, /* 1152x864@75Hz */ }; #define EDID_EST_TIMINGS 16 #define EDID_STD_TIMINGS 8 #define EDID_DETAILED_TIMINGS 4 /** * add_established_modes - get est. modes from EDID and add them * @edid: EDID block to scan * * Each EDID block contains a bitmap of the supported "established modes" list * (defined above). Tease them out and add them to the global modes list. */ static int add_established_modes(struct drm_connector *connector, struct edid *edid) { struct drm_device *dev = connector->dev; unsigned long est_bits = edid->established_timings.t1 | (edid->established_timings.t2 << 8) | ((edid->established_timings.mfg_rsvd & 0x80) << 9); int i, modes = 0; for (i = 0; i <= EDID_EST_TIMINGS; i++) if (est_bits & (1<dev; int i, modes = 0; for (i = 0; i < EDID_STD_TIMINGS; i++) { struct std_timing *t = &edid->standard_timings[i]; struct drm_display_mode *newmode; /* If std timings bytes are 1, 1 it's empty */ if (t->hsize == 1 && (t->aspect_ratio | t->vfreq) == 1) continue; newmode = drm_mode_std(dev, &edid->standard_timings[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } return modes; } /** * add_detailed_modes - get detailed mode info from EDID data * @edid: EDID block to scan * * Some of the detailed timing sections may contain mode information. Grab * it and add it to the list. */ static int add_detailed_info(struct drm_connector *connector, struct edid *edid) { struct drm_device *dev = connector->dev; int i, j, modes = 0; for (i = 0; i < EDID_DETAILED_TIMINGS; i++) { struct detailed_timing *timing = &edid->detailed_timings[i]; struct detailed_non_pixel *data = &timing->data.other_data; struct drm_display_mode *newmode; /* EDID up to and including 1.2 may put monitor info here */ if (edid->version == 1 && edid->revision < 3) continue; /* Detailed mode timing */ if (timing->pixel_clock) { newmode = drm_mode_detailed(dev, timing); /* First detailed mode is preferred */ if (newmode) { if (i == 0 && edid->preferred_timing) newmode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_probed_add(connector, newmode); /* Use first one for connector's preferred mode */ if (!connector->display_info.preferred_mode) connector->display_info.preferred_mode = newmode; modes++; } continue; } /* Other timing or info */ switch (data->type) { case EDID_DETAIL_MONITOR_SERIAL: break; case EDID_DETAIL_MONITOR_STRING: break; case EDID_DETAIL_MONITOR_RANGE: /* Get monitor range data */ break; case EDID_DETAIL_MONITOR_NAME: break; case EDID_DETAIL_MONITOR_CPDATA: break; case EDID_DETAIL_STD_MODES: /* Five modes per detailed section */ for (j = 0; j < 5; i++) { struct std_timing *std; struct drm_display_mode *newmode; std = &data->data.timings[j]; newmode = drm_mode_std(dev, std); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } break; default: break; } } return modes; } #define DDC_ADDR 0x50 static unsigned char *drm_do_probe_ddc_edid(struct i2c_adapter *adapter) { unsigned char start = 0x0; unsigned char *buf = kmalloc(EDID_LENGTH, GFP_KERNEL); struct i2c_msg msgs[] = { { .addr = DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DDC_ADDR, .flags = I2C_M_RD, .len = EDID_LENGTH, .buf = buf, } }; if (!buf) { dev_warn(&adapter->dev, "unable to allocate memory for EDID " "block.\n"); return NULL; } if (i2c_transfer(adapter, msgs, 2) == 2) return buf; dev_info(&adapter->dev, "unable to read EDID block.\n"); kfree(buf); return NULL; } static unsigned char *drm_ddc_read(struct i2c_adapter *adapter) { struct i2c_algo_bit_data *algo_data = adapter->algo_data; unsigned char *edid = NULL; int i, j; /* * Startup the bus: * Set clock line high (but give it time to come up) * Then set clock & data low */ algo_data->setscl(algo_data->data, 1); udelay(550); /* startup delay */ algo_data->setscl(algo_data->data, 0); algo_data->setsda(algo_data->data, 0); for (i = 0; i < 3; i++) { /* For some old monitors we need the * following process to initialize/stop DDC */ algo_data->setsda(algo_data->data, 0); msleep(13); algo_data->setscl(algo_data->data, 1); for (j = 0; j < 5; j++) { msleep(10); if (algo_data->getscl(algo_data->data)) break; } if (j == 5) continue; algo_data->setsda(algo_data->data, 0); msleep(15); algo_data->setscl(algo_data->data, 0); msleep(15); algo_data->setsda(algo_data->data, 1); msleep(15); /* Do the real work */ edid = drm_do_probe_ddc_edid(adapter); algo_data->setsda(algo_data->data, 0); algo_data->setscl(algo_data->data, 0); msleep(15); algo_data->setscl(algo_data->data, 1); for (j = 0; j < 10; j++) { msleep(10); if (algo_data->getscl(algo_data->data)) break; } algo_data->setsda(algo_data->data, 1); msleep(15); algo_data->setscl(algo_data->data, 0); if (edid) break; } /* Release the DDC lines when done or the Apple Cinema HD display * will switch off */ algo_data->setsda(algo_data->data, 0); algo_data->setscl(algo_data->data, 0); algo_data->setscl(algo_data->data, 1); return edid; } /** * drm_get_edid - get EDID data, if available * @connector: connector we're probing * @adapter: i2c adapter to use for DDC * * Poke the given connector's i2c channel to grab EDID data if possible. * * Return edid data or NULL if we couldn't find any. */ struct edid *drm_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { struct edid *edid; edid = (struct edid *)drm_ddc_read(adapter); if (!edid) { dev_warn(&connector->dev->pdev->dev, "%s: no EDID data\n", drm_get_connector_name(connector)); return NULL; } if (!edid_valid(edid)) { dev_warn(&connector->dev->pdev->dev, "%s: EDID invalid.\n", drm_get_connector_name(connector)); kfree(edid); return NULL; } connector->display_info.raw_edid = (char *)edid; return edid; } EXPORT_SYMBOL(drm_get_edid); /** * drm_add_edid_modes - add modes from EDID data, if available * @connector: connector we're probing * @edid: edid data * * Add the specified modes to the connector's mode list. * * Return number of modes added or 0 if we couldn't find any. */ int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) { int num_modes = 0; if (edid == NULL) { return 0; } if (!edid_valid(edid)) { dev_warn(&connector->dev->pdev->dev, "%s: EDID invalid.\n", drm_get_connector_name(connector)); return 0; } num_modes += add_established_modes(connector, edid); num_modes += add_standard_modes(connector, edid); num_modes += add_detailed_info(connector, edid); connector->display_info.serration_vsync = edid->serration_vsync; connector->display_info.sync_on_green = edid->sync_on_green; connector->display_info.composite_sync = edid->composite_sync; connector->display_info.separate_syncs = edid->separate_syncs; connector->display_info.blank_to_black = edid->blank_to_black; connector->display_info.video_level = edid->video_level; connector->display_info.digital = edid->digital; connector->display_info.width_mm = edid->width_cm * 10; connector->display_info.height_mm = edid->height_cm * 10; connector->display_info.gamma = edid->gamma; connector->display_info.gtf_supported = edid->default_gtf; connector->display_info.standard_color = edid->standard_color; connector->display_info.display_type = edid->display_type; connector->display_info.active_off_supported = edid->pm_active_off; connector->display_info.suspend_supported = edid->pm_suspend; connector->display_info.standby_supported = edid->pm_standby; connector->display_info.gamma = edid->gamma; return num_modes; } EXPORT_SYMBOL(drm_add_edid_modes);