Age | Commit message (Collapse) | Author |
|
Use GEM for ring buffer setup and framebuffer allocation. This means reworking
the hardware status page stuff a bit (just use the basic range allocator for
vram for now) and #ifdef'ing out the TTM & DRI2 code. Works well enough to
load/unload several times and display fbcon on my T61 (though there's still
some unexplained console corruption).
|
|
Use new GEM based ring buffer initialization. Still need to init GEM & use it
for framebuffer allocation etc.
Conflicts:
shared-core/i915_dma.c
shared-core/i915_drv.h
|
|
This requires that the X Server use the execbuf interface for buffer
submission, as it no longer has direct access to the ring. This is
therefore a flag day for the gem interface.
This also adds enter/leavevt ioctls for use by the X Server. These would
get stubbed out in a modesetting implementation, but are required while
in an environment where the device's state is only managed by the DRM while
X has the VT.
|
|
Passed the compile test; it's ready to ship.
Conflicts:
libdrm/Makefile.am
linux-core/Makefile.kernel
linux-core/drmP.h
linux-core/drm_memrange.c
linux-core/drm_stub.c
shared-core/drm.h
shared-core/i915_dma.c
shared-core/i915_drv.h
shared-core/i915_irq.c
|
|
The driver can know what hardware requires MI_BATCH_BUFFER vs
MI_BATCH_BUFFER_START; there's no reason to let user mode configure this.
|
|
Without the user IRQ running constantly, there's no wakeup when the ring
empties to go retire requests and free buffers. Use a 1 second timer to make
that happen more often.
|
|
Instead of throttling and execbuffer time, have the application ask to
throttle explicitly. This allows the throttle to happen less often, and
without holding the DRM lock.
|
|
|
|
Just renaming this function and related parameters to match terminology used
elsewhere in the driver.
|
|
set_domain can block waiting for rendering to complete. If that process is
interrupted by a signal, it can return -EINTR. Catch this error in all
callers and correctly deal with the result.
|
|
The problem was revealed where on 965, the display list vertex buffer would see:
create -> (CPU, CPU)
set_domain (CPU, CPU) -> (CPU, CPU)
set_comain (CPU, 0) -> (CPU, 0) (no clflush occurred)
execbuf (GPU, 0) -> (CPU+GPU, 0) (still no clflush)
instead of:
create -> (CPU, CPU)
set_domain (CPU, CPU) -> (CPU, CPU)
set_comain (CPU, 0) -> (CPU, CPU)
execbuf (GPU, 0) -> (CPU+GPU, 0) (clflushed)
|
|
|
|
Otherwise, 965 constant state buffers get re-relocated every exec. Ouch.
|
|
|
|
|
|
Object domain transfer can involve adding flush ops to the request queue,
and so the DRM lock must be held to avoid having the X server smash pointers
badly.
|
|
The interrupt enable register cannot be used to temporarily disable
interrupts, instead use the interrupt mask register.
Note that this change means that a pile of buffers will be left stuck on the
chip as the final interrupts will not be recognized to come and drain things.
|
|
This new ioctl returns whether re-using the buffer would force a wait.
|
|
i915_gem_flush_pwrite optimizes short writes to the buffer by clflushing
only the modified pages, but it was miscomputing the number of pages.
|
|
|
|
When reading from multiple domains, allow each cache to continue
to hold data until writes occur somewhere. This is done by
first leaving the read_domains alone at bind time (presumably the CPU read
cache contains valid data still) and then in set_domain, if no write_domain
is specified, the new read domains are simply merged into the existing read
domains.
A huge comment was added above set_domain to explain how things are
expected to work.
|
|
Newly allocated objects need to be in the CPU domain as they've just been
cleared by the CPU. Also, unmapping objects from the GTT needs to put them
into the CPU domain, both to flush rendering as well as to ensure that any
paging action gets flushed before we remap to the GTT.
|
|
Commands in the ring are parsed and started when the head pointer passes by
them, but they are not necessarily finished until a MI_FLUSH happens. This
patch inserts a flush after the execbuffer (the only place a flush wasn't
already happening).
|
|
Ring locals must be reloaded from hardware in case the X server ran.
|
|
There are now 3 lists. Active is buffers currently in the ringbuffer.
Flushing is not in the ringbuffer, but needs a flush before unbinding.
Inactive is as before. This prevents object_free → unbind →
wait_rendering → object_reference and a kernel oops about weird refcounting.
This also avoids an synchronous extra flush and wait when freeing a buffer
which had a write_domain set (such as a temporary rendered to and then from
using the 2d engine). It will sit around on the flushing list until the
appropriate flush gets emitted, or we need the GTT space for another
operation.
|
|
|
|
Since it's a circular list, the entry won't be NULL at termination.
|
|
Otherwise, in the middle of the function called using it the last ref
might disappear.
|
|
Ring locals must be reloaded from hardware in case the X server ran.
|
|
This lets us get some qualities we desire, such as using the full 32-bit
range (except zero), avoiding DRM_WAIT_ON, and a 1:1 mapping of active
sequence numbers to request structs, which will be used soon for throttling
and interrupt-driven list cleanup.
|
|
|
|
Additionally, a boolean active field is added to indicate which list an
object is on, rather than smashing last_rendering_cookie to 0 to show
inactive. This will help with flush-reduction later on, and makes the code
clearer.
|
|
|
|
|
|
No need to fill the ring that much; wait for it to become nearly empty
before adding the execbuffer request. A better fix will involve scheduling
ring insertion in the irq handler.
|
|
pread and pwrite must update the memory domains to ensure consistency with
the GPU. At some point, it should be possible to avoid clflush through this
path, but that isn't working for me.
|
|
The exec list contains all objects, in order of use. The lru list contains
only unpinned objects ready to be evicted. This required two changes -- the
first was to not migrate pinned objects from exec to lru, the second was to
search for the first unpinned object in the exec list when doing eviction.
|
|
|
|
Rename 'validate_entry' to 'exec_object', then clean up some field names in
structures (renaming buffer_offset to just offset, for example).
|
|
It takes (offset, size), not (offset, end).
|
|
Now, the LRU list has objects that are completely done rendering and ready
to kick out, while the execution list has things with active rendering,
which have associated cookies and reference counts on them.
|
|
Still managing to get something wrong with this, oopsing down in agp.
|
|
|
|
|
|
Whitespace changes, a few too-long-lines and some extra braces.
|
|
|
|
Domain information is about buffer relationships, not buffer contents. That
means a relocation contains the domain information as it knows how the
source buffer references the target buffer.
This also adds the set_domain ioctl so that user space can move buffers to
the cpu domain.
|
|
This should already have been generally safe since we don't change contents
and put in new relocations between execbufs, so if we were writing in a new
relocation then we'd already waited rendering to complete when we moved
the target of the relocation. However, doing the right thing will be required
if we do buffer reuse.
|
|
One of our MI_FLUSH bits is reserved on 965, being always implied, and there's
a vertex cache that was forgotten.
|
|
If objects on the lru aren't ref counted, they'll get pulled from the gtt as
soon as they are freed. This change does cause objects to get stuck in the
gtt until they're forced out by new requests. The lru should get cleaned
when the irq occurs.
|